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Introduction 

One of the main problems in Graded Ring Theory is to see whether a graded 
module having a certain property has a similar property when regarded without 
grading. This problem has been taken into account in [9], using Internal and 
External Homogenizat;on. The main drawback of both methods is that they apply 
mainly to the Z-graded case. The purpose of this paper is to introduce a new tech- 
nique for studying graded rings of type G, where G is an arbitrary group. This 
method will allow us to obtain several results concerning the above mentioned 
general problerns. 

In Section 1 we recall a series of notations and results of Graded Ring Theory. 
In Section 2 we introduce the group ring of a graded ring of type G. More exactly, 

if R = @doEG R, is a graded ring (with identity element) of type G, where G is an 
arbitrary group, we can define on the free R-module R[G] = { Cgcc A,g 1 Ag E R}, 

with the basis {g lg~ G}, a new multiplication and a natural grading, which turn 
R[G] into a strongly graded ring and R into a graded subring of R[G]. We note that 
the multiplication here introduced is different from the usual multiplication on 
group rings, when R is not graded. (However, the two operations coincide when G 
is an abelian group.) The idea which leads to introducing the graded ring RIG] was 
suggested by the optration of External Homogenization for graded rings of type 
Z: if R = @iEz Ri, then the polynomials ring R[T] is a graded ring by R[T], = 

c i+j _n RiT’ (see [9]). We introduce the graded R[G]-module Mid;], starting from 
a left graded R-module A!. Proposition 2. ‘1 and 2.2 give the basic properties of the 
graded ring RIG] and the graded module M[G]. 

In Section 3, using the graded ring R[G] we prove the following result (see 
Theorem 3.1): if M=BUEG M, is a graded left R-module which is gr-noetherian, 
and G is a strong polycyclic-by-finite group, then A4 is a noetherian R-module. This 
result extends the similar result given in [lo] for the case G is finitely generated and 
abelian. The question remains open for the case when G is a polycyclic-by-finite 
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group. This section ends with a result on the Krull dimension of the graded module 
M= @aEGM0 (see Theorem 3.2). 

In Section 4 we give a graded version of Maschke’s Theorem which al!ows us to 
prove a series of results concerning graded rings of type G, where G is a finite group 
(see Theorems 4.3, 4.5, 4.7, 4.10, 4.11, 4.13). These results generalize the similar 
results given in [8] for the case of strongly graded rings. 

In Section 5 we deal with the study of the Jacobson radical of a graded R-module 

M= OaEG Ma (G is finite) using the graded Jacobson radical J,(M). The main re- 
sult is contained in Theorem 5.4, which contains the following assertions: J,(M) c 
J(M), n./(M) E J,(M) and if x= CgeGxg E J(M) where x0 E Mar then n.y~~ E J(M), 
( V)g E G, (n = ord(G)). These assertions, in the particular case R M = RR, constitute 
two conjectures posed by Bergman in his paper [2]. Another proof for the assertion 
J,(M) C_ J(M) is to be found in Corollary 4.14, using the study of gr-superfluous 
submodules in a graded module (see Theorem 4.13). The conjecture J,(R) c J(R) 
was proved for the first time (with different methods) by M. Cohen and S. Mont- 
gomery in their paper [3]. 

We remark that Theorems 4.5 and 5.4 allow us to provide a new simple proof of 
the following known results (see (21, [ 111, [12]): If R = oiE J Ri is a graded ring of 
type Z and M= @icx Mi is a graded module, then the Jacobson radical J(M) and 
the socle s(M) are both graded submodules of M. (The fact that J(R) is graded was 
proved by Bergman in his paper [2].) 

In Section 6, the singular radical and prime radical are studied using the graded 
vtrsion of Maschke’s Theorem (Theorem 6.7). Assertions (1) and (4) of Theorems 
6.7 were piz,red for the first time, using different methods, by M. Cohen and S. 
Montgomery in [3]. Corollaries 6.4 and 6.6 complete the results of this paragraph. 

1. Notations and preb haaries 

All rirn,s considered in t;is paper will be unitary. If R is a ring, by an R-module 
we will mean a left R-modu::, and we will denote the category of R-modules by 
R-mod. If G is a group and R = @ aEG R, is a graded ring of type G, the category 
of graded R-modules will be denoted by R-gr. It is well known that R-gr is a 
Grothendieck category 13). 

IfM=@ aEG M, is a graded R-module, we will let M denote the underlying R- 
alrodule of M and by h(lil) we will mean the set of all homogeneous elements of M, 
Le. h(M) = u aEG MO. Fore any submodule of M we define (N),== @,,(;(NnM,); 
we say that N is a graded subnrc>dule if N=(N),, more generally (N), is the largest 
graded submodule of iU contained in N. 

If M=@&-MO, N=@ OE G No are two graded R-modules, HomR.s,(M, N) is 
the set of morphisms in the category R-gr from M to N, i.e. 

HomR_JMt N) = (f : M -+ N If is R-linear and f(M,) c N,, b’u= E G > . 



If M==@ AEG MA is a graded R-modtile and CTE G, then M(a) is the graded 
module obtained from M by putting Mu =MA,; the graded module M(a) is 
called the a-susperrsion of At 19). It is well known [9] that the mapping M * M(a) 
defines a functor from R-gr to R-gr which is an equivalence of categories. 

If N is a subgroup of G and R =@ OEG R, is a graded ring of type G, 
RtH) = BhE G Rh is a graded ring of type H. 

oreover, if M= @ oEG M, is a graded R-module and (&, is a set of represen- 
tatives for the right H-cosets of G, then for each cri we put M”fO1’ = @hEH M,loi* 
Clearly M(HOJ’ is a graded R(H)-module and M = @&I M(Haf) [9]. 

If H<JG is a normal subgroup of G, the G-grading on R induces a G/H-grading 
on R : R = o6 E oiH Rti where R6 = @II E H Rha (see is]). 

If R=@ a&R, is a graded ring, we say that R is a strongly graded ring if 
R, R, = R,, for any a, TE G. It is well known (91 that R is a strongly graded ring if 
and only if R,R, I= R, for any (TE G (e is the identity of the group G). 

If H<G is a subgroup of G, hen RO’) is also a strongly graded ring. 
The connection between the categories R-gr and R,-mod is given by the 

following: 

Theorem P ((5, Theorem 2.81 or (9, Theorem I .3.4]). Let R = 0, E G R, be a strongly 
graded ring. Then the functor R OR, l : R,-mod -+ R-gr given by M --+ R OK,, M 
where ME R,-mod and R OR, M is a graded R-module by the grading (R OR,, M), = 
Ro@Re M, is an equivalence. Its inverse is the functor ( l ), : R-gr+ R,-mod given 
by M+M, where MER-gr and M=@aEGM,. 

2. Group ring of graded rings 

If R=@,,o R, is a graded ring of type G we denote by RIG] the left free 
R-module with the basis {ola~G}, i.e. R[G]={&,&,gIA#?}. 

We define for every B E G: 

Clearly RIG] = @,,,(R[G]), and R[G] is a graded R-module with the grading 

wwaJ,EG* 
For the elements &,r and I,r’ where A,E R,, A,#E R,), we define their product 

bY 

Since every element of R(G] is an unique sum of elements of the form A,r with 
&,E R,, the product (*) may be extended to a multiplication on R[G]. 

Proposition 2.1. Wit3 the above notations, we have the following assertions: 



( 1) The multiplication defined by (*) is associative. 
(2) RjG] is a strongly graded ring with the grading { (R[G]),, o E G). 
(3) R[G ] is also a free right R-module with basis (o 10 E G ) . 
(49 UWI9,= CoEG R,w and (p : R-+(R[G]),, q~( CaEG Aa) = CaeG A,a-‘, where 

A, E R, is a ring isomorphism. 
(5) If Ha G is a normal subgroup of G, then R[H] is cp graded subring of R[G]. 

(Here R[H]=(C~~,A~~~I~~ER,~~EH). 
(6) If I is a graded left ideal of R, then flG] is a left graded ideal of R[G] and 

WI f=W’WIL = (P(I). 

Proof. We consider the elements { Aa,ri}i= r,2,3 where A,, E R,,. Then we have 

On the other hand 

and so the multiplication of R[G] is associative. 
(2) In order to prove that (R[G]),(R[G]),tc (R[G]),,P it is enough to show that 

(R,,-T)(R,~,, 17’) c (R[G]),,~. Indeed, if A,,- 1 E R,,- 1 and &-I E l&-l we have 

=R aa’(r’a’ ’ Tcf) 1(7’c7’-‘~‘9 G (R[G]),,e. 

Since R,a z (R[G]),, 1 l 0 E (R[G]),. Analogously 1 l 6’ E (R[G]), 1 and therefore 
(R[G]),* (R[G]),-1 = (R[G]),. Hence R[G] is a strongly grade:? ring. (In fact R[G] 
is a crossed product [9].) 

(3) We consider the sum I:= I gili = 0 where li E R. Since {gi)i: 1, ,..,n are homo- 
geneous elements, we may suppose the Ai are homogeneous elements of R. Assume 
that Ai = A,, E RDI. But C giA0, = C I,,(a;‘p,ai) = 0. 

Since deg(g&)=deg(g2;l,)=~~~=deg(g,J,), glal=g2~2=.~~=gnan and there- 
fore the elements (ar’giai}i= r,...,n are pairwise distinct. Then from the equality 
1 A,(a71gioi) = 0 we obtain &,, = 0, i= 1, . . . , n. 

(49 If &E R,, 2,~ R;., we have cp(l,~~)=i,~~,(ar)-‘=(L,~-‘)o,s-’)=cp(A,). cp(A,) 
and therefore (p is a r:ing homomorphism. It is clear that cp is an isomorphism. 
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(5) Let A,h,A,.hkR[H] whereA,cR,. $~R,~and h,h’~N. Then (A,h)fA,@‘)= 
~~~S.(g’-lhg’h’)fRIH]. Hence R(H] is a Tubring of R[G]. It is clear that R[H] = 
~~~~~(R[~]n~R[G])~) which shows that R[H] is a graded subring of R[G]. 

(6) The inclusion q(I) 5 I[G]n(R[G]) is clear. Wow, let xEI[G]n(R[G]),. Then 
X= Cr_, Aigi, AiEI. Since XE ERctiRg ig, then A;ER~,~, and it follows that X= 

VI Cy= 1 Ail E P(J)- 

Remarks. (1) One can also consider the usual multiplication on R[G] : (~~g~(~~~) = 
~~~~(~~~, where a,,b&?, but with this multiplication RfG] is not a graded ring 
with the above grading. 

(2) It is now easy to see that VgE G commute with any element of R[G], and 
therefore R[G] is the group ring of (R[G]),, by the group G in the classical sense. 

Let now MT= BaEG M, be a left graded R-module. We denotz A4[G ] = ORE G MR 
where MS =M, b’gE G which is a left R-module. We can identify 

M[G] = c l 

fzE-c 

The family of abelian groups (M[G]), = CA, rcI MAp defines on M[G] a graduation 
as an R-module. We define on M[G] the multiplication by the rule: 

Proposition 2.2. With the above notations we have: 
(1) M[G] is a graded R[G J-module with the graduation {(MEG]), 1 D E G Is 

(2) (MLGD, = CaeO MO- ICY and the mapping ry : M-+(IW[G]), where v(&, ti rn,) = 
c m,g-‘9 mg E MS is a ~-~~~rn~r~h~srn. 

(3) If t1‘<3 G is a Norman subgroup of G, then M[H] is a graded K[H]-moduk. 
(4) If N c M is a graded submodule of M, then N[G] is a graded .wbmodule of 

MfG] and N[G] f7 (M[G]), = y(N). 
(5) M[G] is isomorphic in the category R-gr &I BgE G M(g-’ ). 
(6) If NC M is an R-submodule of N (non-graded), then RIG]v(N)lnAbf= (N),. 

Proof, The statements (I), (2), (3) and (4), are proved exactly 6s in Proposition 2.1. 
(5) The mapping C,,G m&+(m&& is an R-isomorphism in R-gr from i%Z{G] 

to @g&M@-‘)* 
(6) if xse Nn Mg, since xg - -g(.xgg-l ), then xg E R~G]~~N~ and therefore (AI)& 

Mn~[Gl~(N). 
Conversely, let x= CKEG K x be an element of N. We denote by A+*- @,.u) = 

c xc~x~gV1 E W(N)* If U’I CyS, Aa,Tir A,( &Rc,, is homogeneous of degree 8, then 

0171 =a&_‘ l =* =ci,r, =8. We have 
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ux”= i c &,r,x,g-' 
r=L gG:G 

= i A,, c x,g-‘7; 

i- I g E c 

= i C (AOixg)(CTig)-‘0. 
i=l gEG 

we Put xi= CRfG4z, x and y = Cy=, Xi. It may be easily seen that Xi E N and hence g 
YEN. Now it is straightforward to check that ux* = 8 Cyz, XT= @y*. 

If CYE R[G]v(N) is homogeneous of degree 8, then there exists Zi E N and Ui E 
R[G] with deg Di= 8 such that (x= CT=, DOZY. It follows that there exists z E N such 
that CT=&*. Now, if aER[G]V/(N)nM, it follows that a~&. If z=CRaGzg, 
with z,+,,, then a=Oz*=O&-.zgg-‘= CneC; z,g-‘B and since a E A&, we must 
have Z~ = 0 for g # 8 and hence a = ze = z which shows that (Y E (N),. 

3. Graded rings with finiteness conditions 

If R=@,,o R, is a graded ring of type G and M= BoEG MO is a graded R- 
module, then M is said to be gr-G-noetherian if M satisfies the ascending chain con- 
dition on graded submodules. It is straightforward to check that M is gr-G- 
noetherian if and only if each graded submodule of M is finitely generated. 

The group G is said to be a strong polycyclic-by-finite group if G has a finite 
series (e} =C;,cG,c~*~cG, = G such that Gi is a normal subgroup of G for each 
i=O, 1, . . . , n and the quotients Gi+ i /Gi are either finite or cyclic. (If G has a finite 
subnormal series {e) = Go u G, B l +. a G, = G such that Gi+ I /Gi are either finite or 
cyclic, the group G is called polycyclic-by-finite (see [!3]).) 

The main result of this section is the following: 

Theorem 3.1. Suppose that G is a strong polycyclic-by-finite group and 
M = ooE o M, is a graded R-module. Then the following assertions are equivalent: 

(1) M is gr-G-noetherian. 
(2) &4 is a noetherian R-module. 

The proof of this theorem requires some preliminary results: 

Lemma 1 [9]. Let HUG be a subgroup of G and let {Oi}iE, be a set of represen- 
tatives for the right H-cosets of G. If M is Gr-noetherian, then M(HO1) = 

OhEHMhO, is gr-H-noetherian over the ring R(*! 
In particular, if [G : H] < OQ, then M is gr-H-noetherian over the ring R1*! 
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Proof. See [99 Corollary 8 t 3 I. 

cmma 2. Let (a> aG 
N,={gEGIthere 

(a) IfgeG, g- 
(W H,= {gEG 
(c) H,=H, ‘. 
(d) Ho a G and 

Ji’ . *ijinite cyclic normal subgroup of G. We denote b_v 
exists - 0 :uch that g %g = 0’ >. Then. 
og=a- ‘. 

[G: H&2. 

Proof. (a) Since (0) is a normal subgroup, we have for each g E G, g--log = ci’ and 
gag-’ = a”, where t, u E 2. Hence ga’g-’ = 3 or (gag-’ )‘= (T. Hence a”‘= c and 
therefore ut = 1. It follows that t = + 1. 

(W We apply (a). 
(c) Since g%g=a*(g%g)-‘=a-*~g%~ig=~-l, it f0110ws that H,=,P.I, i. 
(d) If g, h E H, it is clear that gh E HC. Now if g E HO, g-log = o or gq- - 0 or 

(g-y&=0 and hence g-’ E H3.. Thus h, is a subgroup of G. Let g E G, h E H,; 
if ge N,, then g-‘hgE H,; if g$H,, then by assertion (a), go-g-’ =o- ’ and hence 
g-k’g=o. Then(g~*hg)~~o(g~*hg)=g~‘h~‘(gag~*)hg=g~’h~*o~’hg=g~“o~‘g= 
(T and hence g-l hg E H,. Thus H, is a normal subgroup of G. Assume that 
[G : H] 13. There exist &, & E G/H, such that & fg2 and & #a, & fe. Thus 
gi ,g2 $ Ha and by assertion (a) we have gLiagl = 6 ’ and gj ‘ag? = CT I. Then 
(gig~i)%(gig~i)-’ =g2(g;‘agl)g;’ = g2a-‘g;’ =CT and therefore glgz ’ df,. 

Hence g1 =g2, a contradiction. 

Lemma 3. Let H Q K a G be two normal subgroups of G such that KAY = (6:) ,Cr tin 
infinite cyclic group. Let M = 0, E c Mp be a graded R-module such that M[HJ is 
a gr-noetherian module over the ring R[H]. 

Then M[K] is a gr-noetherian module over the ring R[K]. 

Proof. By Proposition 2.2, M[H] is a graded R[H)-mOPule of type G. If 
y = Cy=, mjhj, mj EM, hi E G, is an arbitrary element of M[G] i;~cf g E 6, then b> 
yg we understand the element yg= CC_, mj(hjg) E M[G]. With these notations we 
have 

y(gg’) = (yg)g’ for any g, g’e G. 

Now, since K=(H,o,a-‘), 

M[K] = M[H][o, a-‘] = 
t I 

i xid xi E M[H],m,nzO 
l- tt1 

We denote 

H,={gEGlg-‘6g=& in C/H)={gfG(g-‘~g=hg,,hEH}. 

By Lemma 2 we have KaH,aG, H,=H,_i and [G:H,]iZ. 
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We denote S = RIH](Ho) and N=M[I.. JIHoJ. It is clear that S is a graded ring of 
type H, and N is a graded1 S-module. 

Sub!emma 1. Let y = Cyz i m,,hi E M$H] (Ho) be a homogeneous element of degree z, 
where mgi E i&, hi E H. Let h E I+ be such that 7-k = ha and h’ = th- ‘z-‘. 

Then h ’ E H, (h ‘o)y = ya and ay = y(hc) = (yh)o. 

Proof. By Lemma 2, there exists h E H such that z%7= ha and since H is a 
normal subgroup, h’ E H. Because deg( y) = T, gl hl = g2 h2 = l = g,, h, = T E Ho. Thus 

(h’o)y= i (h’a)(m,,hi)= i m,,(g,‘h’agihi) 
i= 1 r-l 

= i m,(g,r’to)= i m,,(g,T’-r)a= i m,,hia=yG. 
i= I i=l i=1 

Analogously we show that ay=(;lk)a. 
Now, from Sublemma 1, S[o] = {~~zos;& ~S,mz@} is a graded ring of R[G] 

and N[;r] is a graded module over the ring S]a]. 

Step I. N[a] is a gr-noetherian module over the ring S]a]. 
Indeed, let ATN[a] be a graded submodule of N[a]. We denote, for each n ~0, 

It is easy to see that X, is an S-submodule of N. Because X is a graded submodule 
and o is a homogeneous element, Xn is moreover a graded submodule of N. 

Now, let y E Xn be a homogeneous element; there exists a homogeneous element 
XEX with x=y,+yia+ l a* + yen, yi EN. By Sublemma 1, (h’a)x E X and (h’a)x= 
(h’alro+ (h'o)yp+ --t-(h’a)ya”=(h’o)y,+ l -. +yon+’ and therefore YEX,+~. It 
means that XOcX,c*-=cX,,~=** is an ascending chain of graded submodules of 
N. Since M[H] is a gr-noetherian module, it follows by hypothesis, by Lemma 
1, that N is a gr-noetherian S-module. Thus there exists n ~0 such that Xn = 
X = . . . 

n+l - 

For i=O, 1 , . . . , n, let (yi}j= I, . . . . k, be some finitely many homog,eneous elements 
of N that generate Xi as S-module and choose xij E X with 

i- 1 
X~=y~Q’+ C Zkjbk, Zkj E N. 

k=O 

Let XE X be a homogeneous element, X= y. + yla t l ** + _Y#‘, where _Yi EN are 
homogeneous. By induction on the degrees of CJ we show that x is a left S]al linear 
sum of elements (x,li=O ,..., n;j= l,..., k}. 

Indeed, yPeXp. If pm, then yPeXn SO that _~~=C:;~a,~j_~,,j, anjES= BY Sub- 
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lemma 1, ypaP = yp~P-n~n = Cj d,( ynjcY) where A,, E S. Hence _Y,,@ = C, &x,, -t 
lower degree terms. SO x--C~A,~+EX and ~-_C~~~~=y~+y;~~+...i-y,;~~“’ 
where w:cn and y@V. Now apply the induction hypothesis. 

Step II. N[a, 6’ ] is a gr-noetherian module over the ring Sjcr, 6’ 1. 
Indeed, let X be a graded submodule of N[a, U-’ 1. Then XnN[a] is a graded 

S[o]-submodule of N[o] and therefore it is generated by finitely many horns- 
geneous elements xl, . . . , x,, E SW&r]. If x&V is a homogeneous element, then 

x= C:;_,,,nkok, nk EN are homogeneous elements. By Sublemma 1, #XE N[a] 

and therefore cPx = C:‘, 1 &xi, Ai E S[a], so x = C:‘;, (ciTi)xi and hence X is 
finitely generated. 

In addition, if XC Y are two graded S[a, a-‘I-submodules of N[a, a--‘], then we 
have X= Y4CnN[a]= YnN[o]. We denote P=M[F!](G-? By Lemma I and 
the hypothesis, P is a gr-noetherian module over the ring R[k#? 

Step III. Pfa, 6’ ] is a gr-noetherian module over the ring S[a, a-’ 1. 

Sublemma 2. Let y = C mg, hi E M[H] (’ - Hfl) be a homogeneous element of degree f 
wherem,,EMg,, hiEH. Let hEHbesuch that T-‘at=ha-’ and h’=tk’r I. 

Then h’EH, (h’o)y=ya-’ and ay=y(ha-‘). 

Proof. We have glhl =g2h2=- =g,!h,= T where T $ HO. Since tQ C_ Ha, g, $ E&. E3) 

Lemma 2, there exists h such that r-k= ho-‘. Exactly as iii Sublemma 1, we 
show the two equalities. 

Now, by Sublemma 2, P[a-‘1 is an S[a]-graded module. Exactly as in Step 1, we 
show that P[a-’ ] is a gr-noetherian module over the ring S. 

Now, proceeding as in Step II, we prove that P[o, a-‘] is an S[~,(P ’ ]-gr- 

noetherian module. 

Step IV. M[K] is an R[K]-gr-noetherian module. 
Indeed, M[K] -N[o-,o-‘]@P[o,o-‘I. By Steps II and 111, M[Kj is a gr- 

noetherian module over the ring R[K]. 

Proof of Theorem 3.1. The implication (2)= (1) is clear. 
(I)=+(2). Let {e} =G&G,c~~~CG,=G be a normal series for G. I$ 

on 01 krr we show that M[Gi] is a gr-noetherian module over the ring 
i= 0, then MIGO] = M and therefore the statement is obvious. We sup 
M[Gi] is a gr-noetherian module over the ring RiGi]. If Gi, ’ 86 
we assume that Gi+‘/Gi={6’,...,5,); then M[Gi+‘]=M[Gi]O’ 
is clear that the M[Gi]Oi are R[Gi]-gr-noetherian modules, s 
noetherian. Hence M[Gi+ ,] is an R[G, + ‘I-gr-noetherian module. 

If Gi+ ‘/Gi is an infinite cyclic group, by Lemma 3, we obtain the ~t~te~~~~~~t~ 
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Consequently, M[G ] is an R[G ]-gr-noetherian module. 
By Theorem P, it follows that (M[G]), is an (R[G]),-noetherian module. Now 

apply Proposition 2.2 and obtain that M is an R-noetherian module. 

If M is an R-graded module, we denote by K.dimR M, the Krull dimension of A4 
in the category R-mod, respectively in R-gr. (For details on the Krull dimension of 
a module see [6].) 

It is well known that if M is a gr-noetherian module, then gr-K.dimR M exists. 

Theorem 3.2. Suppose that G is a strong polycyclic-by-Jinite group and M is an 
R-gr-noetherian module (hence an R-noetherian module). Then: 

gr-K.dimR MS K.dimR Nsgr-K.dim,, M+ h(G) 

where h(G) is the Hirsch number associated to G (see [13, p. 4263). 

Proof. Let {e} =Go~Gr~ea*~Gn= G be a normal series for G. Taking into ac- 
count the proof of Lemma 3 and the properties of the Krull dimensi,Tn, it may be 
easily seen by induction on OS ir n that K.dim,l,,+ II M[Gi+ I1 = K.&mRIG,l M[GJ 
if Gi+ r/Gi is a finite group and K.dimRlci+ I~ M[Gi+ ,],~K.dirn~l~,~ M[GJ c 1 if 
Gi+ t /Gi is an infinite cyclic group. Now add these ineqilalities to obtain the re- 
quired inequality. 

4. A graded version of Maschke’s theorem. Applications 

In this paragraph (unless otherwise r!entioned) R = BOEG R, will be a graded 
ring of type G where G is a finite group with n = ord G. 

Let M= @&Ma, N=@&,N, be two R[G]-graded modules and f~ 
HomR_#M, N). We define the map f: M+N by the equality: 

sex) = c g- ‘f(gx), EXE fV* 
gEG 

Lemma 4. I. JE HomRIGJ_gr (M, N). 

Proof. It is easy to see that _$(MJ c NO, FOE G. 
Now we show that $ is an R[G]-homomorphism, i.e. f(ax) =af(x) for every 

ae R[Gl. It is clear that it is sufficient to prove that for a = A,r, A, E R,, TSE G. 
Indeed, 

J%&r)x)= c 8.V 'fNg&J)x)= c g-'fu,(g-'~g~M 
t?eG L?cG 

z g-'AJ((cr'gcrr)x)= IE,a-'g-'aS((o‘lgar)x). 
8 gEli 

If we denote h =o-‘gor, we have 



Group rings of graded rings. Applications 

3w, TM = z (A,T)(O - ‘gor) - ‘f((a -- ‘gas)x) 
SE G 

= A,t c K’f(hx) = (A,r)3(x). 
hcb; 

Proposition 4.2. Let M be a graded R[G]-module and ket N c M be m R(G]-graded 
submodule of M. Assume that M has no n-torsion, where n = OPT G. If N is a direct 
summand of M in R-gr, then there exists an R[G ]-graded submodule P of M such 
that N@ P is essential in M as an R-module. 

Furthermore, if M= nM, then N is a graded 
module. 

Proof (After the proof of [7, Lemma I] or 
f E HomK_,,(M, N) such that f(x) =x, VXE N. 

direct summand of M as RIG]- 

[8, Proposition 2.11. We have 
Let f”~ Hom,,,I_,,(M, N) as in 

Lemma 4.1. If XC N, then f(x) = nx, We denote P= Kerf; P is a graded R[G]- 
submodule of M. If XE Pn N, then nx=Q and by hypothesis we have _Y = 0. Let 
x E M; we denote y =3(x) E N. Then f(nx) = n!(x) = ny =3(y) and hence $(UX - y) = 0 
or nx-y E P and therefore nxE P@N or nMc N. Hence N @ P is essential in icY as 
E-module. The second statement is clear. 

If ME R-gr, M is said to be gr-simple [9] if for every graded submodule K u:t’ it1 
\,‘e have N = 0 or N= M. 

,k:’ is said to be gr-semi-simple if M is a direct sum of gr-simple modules. It ix>. well 
known [9] that M is gr-semi-simple ti for any graded submodule N of M, !% is a 
graded direct summand- 

Theorem 4.3. Let M be an R-gr-semi-simple module. If M has no n-torsioli, 
M is an R-semi-simple module. 

Proof. It is sufficient to prove the statement in the case M is gr-simple. We co 
the graded R[G]-module M[G]. By the assertion (5) of Proposition 2.2, M[C] is 
isomorphic to 0,. G M(o-‘) in the category R-gr. Hence M[G] is an R-ga- 
simple module. Since M is gr-simple and M has no n-torsion, ;\I = t~.ig 
M[G] = nM[G]. 

By Proposition 4.2 it follows that M[G] is an R(G]-gr-semi-simple-rnil 
By Theorem P, (M[G]), is an (R[G]),-semi-simple module and hence .V 

semi-simple module. 

Corollary 4.4. Let R = BbE c; R,, be a graded ring of typp G ~~R~?~r~ PI = ord 
vertible in R. If R is a gr-semi-simple artinian. 

For the R-graded module M we denote by s(M), resp. s& 
R-module A& resp. the gr-socle of M (i.e. s,(iz * g--s 

W. 
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Theorem 4.5. f&t M = enE o L& be an R-graded mod&j where n = ord G. Then: 

(1) NW z; s,OO- 

(2) pIsg(M) G SW). 

(3) If M has no n-torsion, then s,(M) =s(M). 

(4) If x= C@ $ x E s(M) where xs E Mg, then nxs E s(M), Vg E G. 

Prwf. (1) It is well known that s(M) = intersection of all essential submodules of 
M. Analogously, we can show that s&(M) = intersection of all graded essential sub- 
modules of M. By Lemma 1.2.8 of [9, p. 111, every graded essential submodule of 
M is an essential submodule. Hence s(M) G s,(M). 

(2) Let NC M be a gr-simple submodule of M. If nN=O, then nNc s(M). If 
nNf0, then because N is gr-simple, N=nN and hence N has no n-torsion. By 
Theorem 4.3, it follows that N is a semisimple submodule of M and consequently 
!V c s(M). Hence ns,rM) 2 s(M). 

(3) follows from (1) and (2). 
(4) E!ly assertion (l), we have that x, EsJM), Vo E G. Now we apply statement 

(2) and we obtain that nx, E s(M) for any cc E G. 

Corollary 4.6 [ 11, Theorem 2.21. Let R = @ic z Ri be a graded ring o,f type Z atid 
let M=@ies Mi be an R-graded module. Then the socle s(M) is a graded sub- 
modur’h of M. 

Proof. Pick XES(@) and decompose it as x=x_~+x_~+~+~~~+x~~-x~+~~~+x~, 
where x; EMU. Let n>l+ k; the Z-graduation of R induces a Z/n&graduation in an 
obvious way. In this graduation the homogeneous components of x are exactly 

X-~,X-&+i,***,~~,X],.*~, xl. By Theorem 4.5 we have that nXi ES(M). 
Pick p,q two prime numbers such that they are both greater than I+ k. Hexe 

/lxi E s(M) and qXi ~s:iM). Since (p, q) = 1, Xi EM and therefore s(M) is a graded 
submodule of hf. 

Theorem 4.7. Let R = BCZE o R, be a graded ring of type G. (G is a finite group). 
If Q = @‘& 6; Q. is a gr-injective object in the category R-gr, then Q is an injective 
module in R-mod. 

Proof. We show that Q[G] is an injective object in the category R[G)-gr. Indeed, 
we consider the following diagram 
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QlGl 

I 
Q &+ QlGl 

where ME R[G]-gr, N is an RIG]-graded submodule of iw and I* 

HomRIG]-g,(N, &fW 
‘We define the canonical projection n : Q[G]-+Q by n( I,,,; m,g} = t~z, where 

m,eQ and i: Q+Q[G] by i(m)=m*e. 
1f ~E(Q[G]),, then 

and therefore Z(X) = m,, so I~((M[G]),)~M,. Hence ZE HomH.,,(QIG], 01. It is 
clear that i E Horn R_gr(Q, Q[G]). We denote g = i 0 n OJE HomH.& Q[G)). Siince 

QKGO,~GQW’) in the category R-gr, Q[G] is an injcctive object ir\ the 
category R-gr. There exists an h E HomR_Rr (M, Q[G]) such that h(s) =g(s), V.K .V. 
We consider the morphism &Horn RIG1_pr(M, Q[G]) given by Lemma -I. 1. h-~~mc‘c 

fice = Cd& a-‘h(a-x), EM. If XEN~, we have 

@x)= C CJ-'h(G*X)= C t7-'(iO??Of)(b-.Y)= C a-‘i(n(ofi$)). 
OEG tTEG ot-c; 

Since fcx) E (Q[G])A, f(x) = &,,G mAlu 1~ and therefore 

of(x)= C rnAfl y&‘aAp-‘p= C ml, Q.&S7A). 
UEG PEG 

This means that &x)=f(x), VXE N. Hence Q(G] is an injective object in t 

category R[G]-gr. Now, by Theorem P, we obtain that ( 
(RIG]),-module and by Proposition 2.2 (4). Q is an injecti 

gr-inj .dimR M = inj.dimR M. 
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Proof. If O-+M-+QO-+Q1 -+Q2-+ is a minimal injective resolution of M in the 
category R-gr, then by Lemma L2.8 of [9] and Theorem 4.7, this is a minjmal injec- 
tive resoEution of &Z in R-mod. 

The graded ring R is said to be gr-quasi Frobenius if RR is gr-artinian and gr- 
injective. 

Corollary 4-9. Let R = @IOE o R, be a graded ring of type G (C is a finite group). 
[f R is gr-quasi ~r~b~nius, then R is quasi-~r~ben~us. 

Proof. It is easy to see that *R is a left R,-artinian module and ~onsequentIy R is 
a Ieft artinian ring. Now the statement follows immediateIy from Theorem 4.7. 

Theorem 4.10. Let R = l&E G R, be a graded ring of type G where n = ord E is in- 
vertible in R, If R is a left gr-hereditary (resp. gr-semi-hereditary, msp. gr-regular 
Von Neumann) ring, then R is a left hereditary (resp. seals-hereditary, resp. ~~gu~a~ 
Van Neumann) ring, 

Proof, Let K be a left graded idea% (resp ieft finitely generated graded ideal) of 
R[C?]. There exists a gr-free module L (resp. a gr-free module with finite basis) in 
the category RfG]-gr such that 

where p E Horn , HIGj_gr(L, K) and p is surjective. 
Since L is a gr-free R-module (resp. L, is a gr-free R-moduk with finite basis) and 

R is gr-hereditary (resp. gr-semi-hereditary), K is a gr-projective R-module and 
therefore there exists a ci E HomR_,,(K, L) such that q~ 0 w = 1,. 

Using Lemma 4.1, we consider the map p E HomRrcl_,,(K, L), It is easy to see 
that cp 12 (1 /n)p = 1, and hence K is a gr-projective RIG]-module. Conr;equently 
R[G] is left gr-hereditary (resp. gr-semi-hereditary)* Now we apply Theorem P to 
obtain the statement. 

Analogously we show that gr-Von Neumann regular implies Von Neumann 
regular. 

If R=@ OE G R, is a graded ring, we denote by gl.dim R (resp. gr-gl.dim R) the 
left homological gitibal dimension of the category R-mod (resp. of the category 
R-gr). 

.ll, Let R = aaEG R, be a graded rin,p of type G where n = ord G is in- 
v~rtib~e in R. Then 

gr-gl.dim R = gl.dim R. 
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roof. The inequality grgl.dim R s gl.dim R is clear. 
Suppose now that I = gr-gl .dim R. Let ME R[G ]-gr and let 

fn fi fo . . . -+ pn _3 . . . -> p, -+P,--+M--+o 

be a projective resolution of M in the category R[G]-gr. 
Since R[G] is a free R-module, the Pi are projective R-modules for ej,‘ery i L 0. 
Since gr-gl.dim R z= t, K = Ker f, _ 1 = Imfr is a projective R-module. ‘Therer’ore 

there exists g, E HomR+,, (K, PI) such that f, og, = IK. Using Lemma 4.1, we consider 
the map g, E HomRrG1_#, P,). It is easy to see that f, 0 ( 1 in)& = iK and therefore 
K is a gr-projective R[G]-moldule. Hence gr-gl.dim R[G] 5 t. Now, tq Theorem It”, 
vde obtain that gl.dim(R[G]),s t and consequently gl.dim R c t. 

Remark. If n is not invertible, then Thec?rem 4.11 is false. (For example, if 
R = R[G], where R is a field.) 

If ME R-gr and K c M is a graded submodule of M, then h,: is callc 
superfkous (or gr-small) in M if the case for every graded submodule 
K+L=M implies L=M. 

Proposition 4.12, Let (M& I, ..,, ,,, be graded R-moduks and K, c AI, br ,qr- 
superfluous modldes in Mi, for every i = 1, . . . , n. Then @yT , K, is a grwperjlwrcr 
in @y=, Mi. 

Proof. Using the induction method, it is sufficient to prove the proposition for k 
case n = 2. 

Let L be a graded submodule of M,@M2 such that (KI K++ L = ~~~~~~~~~. 
It is easy to see that Ki + (Kz + L)nM, = MI. Since K, is gr-superfluous in M,, 
(M,+L)iIM,, =M,, so M,c&+L. 

Since K&M1~K2+L~M1@Mz, K2+L=M,@Mz. Hence K2t(LnM+= k&. 
Since I;i is gr-superfluous in Mz, L f7 M2 = M2, so M2 c t and therefore MI ,C L . 
Hence L = Ml @A&. 

Theorem 4.1.3. Let R = @IOEG R, be a graded ring whew G is a finite g 
M be a graded R-module and Kc M bc c. gr-superfluolrs srrbmodirke in M. ~~~~~r~~ A” 
is a sldperfluous submodule in M. 

Proof. By Proposition 2.2(5) and Proposition 4.12, we hate that 
superfluous submodule in M[G] as R[G]-module. Now, if we apply The 
obtain that v(K) =(K[G]), is a superfluous submodule in 
(R[G]),-moldule. Hence K is a superfluous submodule in Aif. 

remark. Theorem 4.13 is false if the group is i~~fi~i~e (9x . 
p- m 
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If M is a graded module, we denote by J,(M) the intersection of all gr-maximal 
submodules of M; we call J,(M) the gr-Jacobson radical of M (see 191). 

We shall denote by J(M) the Jacobson radical of M regarded without grading. 

Corollary 4.14. Let R = 0, E G R, be a graded ring where G is a finite group and 
let M Se a graded finitely generated R-module. Then 

Jg(M) c JO0 

proof. It is easy to see that J,(M) is the unique largest gr-superfluous submodule 
in M. By Theorem 4.13, the assertion follows. 

Corolilrrry 4.15. Let R= BaEG R, be a graded ring where G is a finite group and 
let lW be a graded R-module. If P f, M +O is a projective cover of M in the 
category R-gr, the P -M-+0 is a projective cover of ,W in the category R-mod. 

Remarks 4.16, (1) All results in this section generalize their analogues given in [8] 
for strongly graded rings. 

(2) It is easy to see that the converses of TheoreEls 4.3, 4.7, 4.10 and Corollaries 
4.4 and 4.9 also htjld. 

(3) Let R=@iEz Ri be a graded ring of type Z such that it is left and right 
limited, i.e. there exist me N with the property that Ri=zO, Vi&T, i@ [-m,m]. 

For art arbitrary n EN such that n > m, the Z-graduation of R induces a Z/r& 
graduation in an obvious way. 

With new grading, the homogeneous components of R are the same with the ones 
in the initial grading. 

This remark allows us to apply some of the results of this section to the case of 
L-graded rings which are left and right limited. Let us show, for example, that if 
Q = eieL Qi is a gr-injective R-module, then Q is an injectiaie R-module. Indeed, 
let I be a left graded ideal of R (considered with the (Z/nZ)-grading). Then I is a 
left graded ideal of R with the initial grading. Since Q is gr-injective, 
Extk(R/I, Q) = 0 and hence Q is gr-injective in the (Z/nZ)-grading. Applying now 
Theorem 4.7, the assertion easily follows. 

There are numerous examples of graded rings of type 2 which are left and right 
limited. Here is one of therm: let (R, RMS, sNR, S) be a Morita context with maps 
( , ):M&N-+R and [ , ]:N&M-+S (see for example [l, p. 621). We consider 
the matrix ring 

T= I:< M 

L > N Is 

in which the multiplication is defined by means of the mappings ( ,, ) and [ , 1, The 

ring % may be graded as follows: 
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With this grading, T is left and right limited. 

5. The Jacobson radical 

Lema 5.1. R = @laEG R,, where G is a finite group. 
If M= @OF G M, is a gr-simple object in R-gr, then M is semi-simpie artinian oj’ 

finite length in R,-mod and lR (M) 5 YI, where n = ard G. P 

Proof. If M,,#O, let XE M,, x#O. Since Rx= M, Rxn M, = M,. But RxflM, = R,s 
and R,x= M,. Hence Ma is a simple R,-module. 

Lemma 5.2. R = @ (3E G R, is a graded ring, where G is a finite grorrp. If M E R[G]- 
gr is a simple object, then M is gr-semi-simple of finite length in the category R-gr. 

Proof. It is easy to see that RM is finitely generated. So there exists a gr-maximal 
submodule N of M in the category R-gr. Hence M/N is gr-simple in R-gr and by 
Lemma 5.1, M/N is a semi-simple R,-module of finite length. 

Since M/N==M/aN in R,,-mod, we obtain that M/ON is a semi-simpk R, s 

module of finite length. (We remark that N is not an R-submodule of M.) 
If we denote N*= n _+N, then N* is a graded R[G]-submodule of A?‘, ln- 

deed, if ageR, and hEG, then a,hN*5a,haN=g(ha)g-‘a,Ncg(ha)g %‘. w 

u&V* c n g(ha)g-’ N = N*. 
UEG 

Since M is a gr-simple module in R[G]-gr, N* = 0. Furthermore 0 -9 M --3 
BoEG M/ON and we obtain that M is semi-simple of finite length in R,-IYKK!. 

Now it is clear that M is gr-artinian and gr-noetherian in the category R-gr. 
There exists an R-graded submodule F#O of M which is gr-simple. 

define f: P [G]-+M, f(x& =gag-* . xg where X~ E &, 0 E G. Clearly J((P 
MA, A E G. We show now that f is an RIG]-homomorphism. Indeed, if 41, E R, and 
r E G, we have 

f((a&(x,a)) =f(aAx,g-‘rga) =g(g-‘rgO)g-‘A _ r(&Q 

= (Argog- ‘A- * )(a& ‘ 

On the other hand 

(aA 7) l f(x& = (aA r)(gag -‘s,) = (aAgog_ ’ )ss 

= (A7gg-V’ )(a#&) 

and hence f is an R[G]-homomorphism. 
that f is surjective. 



330 C. Nslstkescu 

By Proposition 2.2(4), R[G] is gr-semi-simple in R-gr, so M is gr-semi-simple of 
finite length in R-gr. 

emmar 5.3. Let R = BaE~ R, be a strongly graded ring of type G (G is a finite 

&YOUP)* If M=O,.G M, is a left graded R-module, then 

Pwof. If S=@*& <i S is a simple object in R-gr, then S is a semi-simple R,- 
module (Lemma 5.1). Hence JR$M,) c J,(M) n M,. Conversely, let T be a simple 
R,-module and f: Me -+ T and R,-homomorphism, By Theorem P, S = RQ&, T is 
a simple object of R-gr. We have 

M=Rc&,M, 
10.f 

-R&,T 

where 1 @f is an R-homomorphism. Hence 

(I @f )(Jg(MN = 0 

and because J&M)= RORe(Jg(M)nM,) we obtain that R&, f((J,(M)nM,)=O, 
SQ R,&f(J,(M)nM,>-0 and therefore f(J,(M)nM,)=O or J,(M)nM,c 
JR,(M,)- 

Theorem 5.4. Let R = BgE G R, be a graded ring of type G where n = ord GC 00, 
and let 44= BQE G M0 be a left graded R-module. Then: 

(1) J,(M) c J(M). 
(0 J&W= WW),. 
(2) n - J(M) c J,(M). 

(2’) If x= CaeL; .~a E J(M) where x, E M,, then nx, E J(M) for any o E G. 
(3) If n is invertible in R, then J,(M) = J(M). 

(4) J(R)“Mc J,(M). 
(5) J(R) n R, = J,(R) fi R, = J(R,). 

Proof. /I) Let V be a gr-simple object in the category R[G ]-gr and f E 

HomRIGj-gr( M[G]., U). By Lemma 5.2, U is gr-semi-simple in R-gr. So f( J,(M)) = 
(f oi)(9,(M))=O h w ere i is the inclusion morphism i : A4 --+ M[G] . Hence J,(M) c 
J,(M[G]) and therefore J,(M)[G] c J,(M[G]). 

By Proposition 2.2 and Lemma 5.3 we have 

J,(WKWWEGl),c_ J,(MK4)n(M[W),= JMGI), 

or v&(M)) c w( J(M)) and the assertion follows. 
(1’) Let x E (J(M)), be a homogeneous element and f E HOmR_g,(M, S) where S is 

mple R-module. Then f(x) E J(S), so Rf(x) C_ J(S). If f(x) #O, then because 
f(x) is a homogeneous element, Rf(x) = S or J(S) = S, a contradiction (S is a finitely 
generated R-module). 
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(2) Let x~J(it4) be an arbitrary element and f E Hom,+,,(M, S) where S is a gr- 
simple R module. If S has no n-torsion, then, by Theorem 4.3, S is a semi-simple 
R-module and therefore j’(x) = 0 or f(nx) = 0. 

If S has no n-torsion, then the homomorphism (p,, : S 4, q,,(x) = nx, has 
Ker pn # 0. Since S is gr-simple, qn = 0 or nS = 0. Hence f(nx) = 0 and consequently 
nJ(M) c J&M j. 

(2’) follows directly from (2) and (3) follows from (1) and (2). 
(4) If SE R-gr is gr-simple, then, by Lemma 5.1 we obtain that M is artinian of 

finite length in R-mod. Moreover, I,(S)&(S)5 n. Hence J(R)%= 0 and thus 
clearly J(R)“M c J,(M). 

(5) It is clear that J,(R)n R, = (J(R)),n R,. Now, by statement (1 ‘), we obtain 
the equality J(R) n R, = J,(R) n R,. Let IG R be a left gr-maximal ideal of R. Since 
R&L R/I, we obtain, by Lemma 5.1, that R,/I, is a semi-simple artinian module 
in R,-mod. Hence J(R,) c Ie and J(R,) c J,(R)n R,. 

If a E J,(R)fl Fe we have that 1 - a is invertible in R and it is easy to see that 1 - u 

is invertible in R,. Hence 0~ J(R,), so J,(R)fl R c J(R,). 

Corollary 5.5. If R = BiEZ Ri is a graded ring of type Z and M = a,, ; M, u graded 

R-module, then J(M) is a graded submodule of M. 

Proof. Let x= CieP Xi E J(M) be an arbitrary element with xi EM,. Let p,y be two 
prime numbers which are strictly greater than the number of non-zero homogeneous 
components of x. We consider R and M graded by the (E/pZ)-grading. By Theorem 
5.4(2’) we have PXi E J(M), Vi E Z. 

Analogously, we obtain that qxi E J(M). Since (p, q) = 1, s, E J(M). 

Remarks 5.6. The assertions (1) and (2’) of Theorem 5.4 provide an answer to the 
question asked by G. Bergman in his paper [2]. We proved them in a more general 
case, namely for modules. The includion J,(R) c J(R) was proved for the first time 
by M. Cohen and S. Montgomery in [3]. 

The proof of Corollary 5.5 for M= R was given by G. Bergman in [2r and the 
general case was presented in [12]. Another proof of the inclusion J,(M) c J(M) is 
contained in Corollary 4.14 using the study of gr-superfluous submodules (see 
Theorem 4.13). 

6. Singular radical and prime radical 

In this section R = &G R, will be a graded ring of type G, where G is a finite 
group with n = ord G. Using the graded version of Mas&;ke’s Theorem (see Section 
4) we shall prove several properties of the singular and prime radical. 

The main results in this paragraph are Corollary 6.3 and Theorem 
The assertion (1) and (4) of Theorem 6.5 were proved for the First ti 
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different method, by M. Cohen and S. Montgomery in [3] (see Corollary 5.5 and 
6.4 from [3]). 

Lemma 6.1. Let M be a graded R[G]-module and let NC M be a graded R- 
submodule of M. We denote N* = no, G aN. 

(i) N* is a graded R[G]-submodule of M. 
(ii) If N is an essential R-submodule of M, then N* is essential in M as R-module. 

Proof. (i) is clear. 
(ii) Assume that N is an essential R-submodule of M. Let 0 fxs E M9 be a 

nonzero homogeneous tlement of M and the set G = {q, . . . , a,} n Then x= 
(al + l *g + cr,)x,czM and x+0. By the proof of [9, Lemma 1.2.81, there exists 
aA~RA such that qx#O and aAxEN. Hence aAqx,EN, Vi=1,2,...,n. Since 
lJAU=;iciA-‘a*, aLa+, 

n 
=AaJ-*anx,EN or aAx,4q?A-1. N. Therefore aAx,E 

I=, Aa?‘A-‘N=N*. Since aAxf0, it is clear thai QX~#O. 
Now, using again 19, Lemma 1.2.83 it follows that N* is an essential R-submodule 

of ikK 

Proposition 6.2. Let NC M be two graded R[G]-modules, having no n-torsion. 
Then 

(i) There exists a graded R[ G ]-submodule P C_ M with N@ P essential in M as 
R-module. 

(ii) N is essential in M as RIG]-module if and only if N is essential in M as 
R-module. 

Proof (After the proof of [8, Corollary 2.11 or [7, Lemma 21). 
(i) Let L be an R-graded submodule of it!, maximal with respect to the property * 

that NnL = 0. Then N@L is essential in JV as R-module. Let (NO 
.L)* = n oEG ci l (N@L). By Lemma 6.1, (N@L)* is essential in M as R-module. If 
K = (NO L)*, then rVc KC N@ L, so K = N@(K n L). By Proposition 4.2, there ex- 
ists an R[G]-graded submodule P of K such that N@P is essential in K as R- 
module. Hence N@P is essential in M as R-module. 

(ii) follows directly from (i). 

Cordlary 6.3. Let R = @ aEG R, be a graded ring and ME R-gr. Suppose that R 
has no n-torsion. Then Z(M), the singular submodule of M, is a graded submodule 
of M. 

Proof. We consider the graded R[G]-module M[G]. By [8, Corollary 2.51 
Z,,,,(M[G]) is a graded submodule of M[G] and 

zR(G)(M[Gl)n(M[Gl), = &[G])e((MIGl)e)* 



Croup rings of graded rings. Ap licarions 333 

Let x E Z,I,l(MIG]) be a homogeneous element of degree 0. Hence x = S:” , tu,, h, 

where mR, E Mg,, hi E G and gihi = 0 (1 s&m). Thus I= IRIcl(x) is an essential left 
graded ideal of R[G]. By Proposition 6.2, I is an essential left ideal of R[G] as an 
R-module, thus J= U7 R c R is an essential left ideal of R. But it is clear that 
Jo mg, = 0, so mg, E (Z(M)),, Vls is m. Therefore Z,I,#4[G]) c (z(M)),[G] and 
consequently 

and finally z&M) c (Z(M)), or Z,(M) = (Z(M)),. 

Corollary 6.4. Let R = BflE G R, be a graded ring and ME R-gr such that M has no 
n-torsion. If N c M is an essential R-submodule of M, then (N), is essential in M. 

Proof. Clearly v(N) is essential in v(M) =(M[G]), as (R[G]),-module. By 
Theorem P and [9, Lemma I.24 we obtain that Ry/(N) is essential in M[G] as 
RIG]-module. Now, by Proposition 6.2(ii), Rt&N) is ess,entiall in M[G] as R- 
module. Hence IMn R[G]y/(N) is essential in M as R-moduk. If we apply Proposi- 
tion 2.2(6), we have that(N), is essential in M. 

If R is a graded ring, a grmded ideal I is graded prime if wfhenever JK c I for J, A’ 
graded ideals of R, then JC I or Kc: I. 

The graded prime radical rad,(R) is the intersection of all graded prime ideals1 of 
R. We denote by rad(R) the prime radical of R, i.e. the intersection of all print 
ideals of R. 

Proposition 6.5. Let R be a graded ring and I a graded ideal oj’ R. 
(i) I is graded prime * I = (P),, the associated graded ideal of wme prime P of R. 

(ii) sad,(R) = (rad(R)), . 

(iii) I is a graded prime ideal of R @ there exists a graded prime ideal J oj’ RIG ] 
such that I=JnR. 

(iv) rad, R = rad,(R[G])n R. 

Proof. For the statements (i) and (ii), see 13, Lemma 5.11. 
(iii) Let J be a graded prime ideal of RIG] and I,, I2 two graded ideals of R su& 

that 1ip2 C_ JnR. Then 1&G] 9 I,[G] c J and therefore ,I, [G] c J or k[G] s J, UST 
Il=&[G]nR~JnRor Z2= 12[G] f3 R c Jn R. Hence Jn R is a graded prime i 

of R. 
Conversely, let I be a graded prime ideal of R. Since I[G] n R = I, we can ch 

by Zorn’s Lemma, a graded ideal J of R[G] maximal with respect to J 
is easy to see that J is a graded prime ideal of R(G). 

(iv) By statement (iii) we have that rad, R ;J rad,(R[G])rl R. Con~~rseI~, wc” 
prove that (rad, R)[G] C, rad,(R[G]). For this, it IS sufficient to sh.x t 

graded ideal which is nilpotent, then J[G] is a nilpotent ideal in RIG]. it 
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that if I”’ = 0, then (I[G ])” = 0. 
Indeed, it is sufficient to prove that if a,,, . . , , u,.,,,, E I are homogeneous elements 

of I and rl, . . . . 2;, E G, then (q,,q)(a,p~) *a* (a,,, c,,*) = 0. Since (a,,7J(a,,72) = 

a~,q,,(c~~~ 7, a2 79, there exists an element : E G such that (ao,71) l (a,,,,z,,) = 

(a,, l a,,)7 and thus (II,, 71) l (aa,Tm) = 0. 

CorOIIary 6.6. Lt?t R = @GE G R, be a graded ring such that n = ord G is invertible 
in R. If P$ I are two ideals of R, where P is a prime ideal, then (P)&(I),. 

Proof. Clearly, &P&q(I) and q(P) is a prime ideal of (R[G]),. Since any g E G 
commutes with all elements of (R[G]),, R[G] 9 q(P’) is a graded prime ideal of 
R[G]. Analogously, R[G]&I) is a two-sided ideal of R[G] and R[G]~I(P)$ 
R[G]q@). But it is easy to see that R[G]cp(l)/R[G]q(P) is essential in 
R[G]/R[G]&P) as R[G]-module, and hence it is essential as R-module (Proposition 
6.2). Using Proposition 2.2((i), we obtain that (I),/(P), is essential in R/(P), and 
therefore (P), $ (I), . 

Theorem 6.7, Let R be a graded ring of type G where n = ord G. 
(1) If R has no n-torsion, then rad(R) = rad,(R). 
(2) n(rad(R)) c rad,(R). 
(3) If&== c gEG ag rad(R), a, E R,, then na, E rad(R). 
(4) (rad(R))” z rad,(R). 

Proof. (1) First, we shall prove the equality: 

(rad, R)[G] = rad, R[G]. 

Replacing the ring R with the ring R/t-ad, R, it is sufficient to suppose that R is a 
graded semi-prime ring. (It is easy to see that the ring R/rad, R has no n-torsion.) 
We shall prove then, that rad, R[G] =O. To continue the proof, we shall proceed 
as in 1; 14, Theorem 2.21, using the graded version of Maschke’s Theorem. 

Let N be a nilpotent graded ideal of RIG] and let I= lRrC1(N). Then I is a graded 
ideal of R[G] and moreover, I is an essential right ideal in R[G] (see the proof of 
[ 14, Theorem 2.23). Now we apply Proposition 6.2 and conclude that 114 R is an es- 
sential right ideal in R, hence In R #O. Since rad,(R) = 0, l,#n R) = r&In R) = 0. 

Simte In R is a graded ideal of R, it is easy to see that ,,,,,(1f7 R) = r,[&nR) = 
0 and therefore / R[G](r) == rRrC7 (1) = 0. Since N c rRtC1(J), N= 0. 

Consequently, we have (rad, R)[G] = rad, RIG]. By Proposition 2.1, &rad,(R)) = 
rad, R[G] n (R[G]),. By (8, Corollary 4.41, rad R[G] fI R[G], = rad(R[G]),. Since 
rad, RIG] = (rad R[G]),, it is clear that 

rad, R[G]n(R[G]),= rad(R[G]& = (p(rad R). 

So &rad,(R)) =&ad R) and hence t-ad,(R) :.= rad(R). 
(2) Let P be a graded prime ideal of R and a E rad(R). If n - I E P, then RQE P; 
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if n 9 1 $ P, then R/P has no n-torsion and thus, by statement (1) WC have 

rad(R/P) = 0, so rad R c P. Hence na E P. Therefore na E rad,(R). 
Assertion (3) follows from (1) and (2). 
(4) The ring R/rad,(R) is graded semi-prime. Exactly as in [7, Theorem 71 or [S, 

Theorem 4.21, we show that the ring R[G]/rad,(R)[G] has a unique maximal 
nilpotent graded ideal N such that (I’” = 0. Hence (rad, RIG])” c rad,(R)[G] and 
applying again Proposition 2.1 we obtain that 

Ca((rad R)“) C (rad,(R)) or (rad R)” c_ rad,(R). 
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