Journal of Pure and Applied Algebra 33 (1984) 313-335 313
North-Holland

GROUP RINGS OF GRADED RINGS. APPLICATIONS

Constantin NASTASESCU

Universitatea Bucuregti, Facultatea de Matematica, Str. Academiei 14, R 70109 Bucharest 1,
Romania

Communicated by H. Bass
Received 27 October 1983

Introduction

One of the main problems in Graded Ring Theory is to see whether a graded
module having a certain property has a similar property when regarded without
grading. This problem has been taken into account in [9], using Internal and
External Homogenizat,on. The main drawback of both methods is that they apply
mainly to the Z-graded case. The purpose of this paper is to introduce a new tech-
nique for studying graded rings of type G, where G is an arbitrary group. This
method will allow us to obtain several results concerning the above mentioned
general problems.

In Section 1 we recall a series of notations and results of Graded Ring Theory.

In Section 2 we introduce the group ring of a graded ring of type G. More exactly,
if R=®,cg R, is a graded ring (with identity element) of type G, where G is an
arbitrary group, we can define on the free R-module R[G]={declgg!/1geR},
with the basis {g|ge G}, a new multiplication and a natural grading, which turn
R[G] into a strongly graded ring and R into a graded subring of R[G]. We note that
the multiplication here introduced is different from the usual multiplication on
group rings, when R is not graded. (However, the two operations coincide when G
is an abelian group.) The idea which leads to introducing the graded ring R{G] was
suggested by the opcration of External Homogenization for graded rings of type
Z: if R=@®;czR;, then the polynomials ring R[7] is a graded ring by R[T],=
r. j_,,,R,-Tj (see [9]). We introduce the graded R[G]-module M{G], siarting from
a left graded R-module M. Proposition 2.1 and 2.2 give the basic properties of the
graded ring R[G] and the graded module M[G].

In Section 3, using the graded ring R[G] we prove the following result (see
Theorem 3.1): if M=@®,.c M, is a graded left R-module which is gr-noetherian,
and G is a strong polycyclic-by-finite group, then M is a noetherian R-module. This
result extends the similar result given in [10] for the case G is finitely generated and
abelian. The question remains open for the case when G is a polycyclic-by-finite
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group. This section ends with a result on the Krull dimension of the graded module
M=®,.cM, (see Theorem 3.2).

In Section 4 we give a graded version of Maschke’s Theorem which allows us to
prove a series of results concerning graded rings of type G, where G is a finite group
(see Theorems 4.3, 4.5, 4.7, 4.10, 4.11, 4.13). These results generalize the similar
results given in [8] for the case of strongly graded rings.

In Section 5 we deal with the study of the Jacobson radical of a graded R-module
M=®,c M, (G is finite) using the graded Jacobson radical Jo(M). The main re-
sult is contained in Theorem 5.4, which contains the following assertions: J (M) ¢
JM), nJ(M)C J,(M) and if x= Y.ccXg € J(M) where x,€M,, then nx,e J(M),
(V)g e G, (n=o0rd(G)). These assertions, in the particular case g M = xR, constitute
two conjectures posed by Bergman in his paper [2]. Another proof for the assertion
Jo(M)C J(M) is to be found in Corollary 4.14, using the study of gr-superfluous
submodules in a graded module (see Theorem 4.13). The conjecture J.(R)C J(R)
was proved for the first time (with different methods) by M. Cohen and S. Mont-
gomery in their paper [3].

We remark that Theorems 4.5 and 5.4 allow us to provide a new simple proof of
the following known results (see [2], [11], [12]): If R= @), R, is a graded ring of
type Z and M= ®,.; M; is a graded module, then the Jacobson radical J(M) and
the socle s(M) are both graded submodules of M. (The fact that J(R) is graded was
proved by Bergman in his paper [2].)

In Section 6, the singular radical and prime radical are studied using the graded
version of Maschke’s Theorem (Theorem 6.7). Assertions (1) and (4) of Theorems
6.7 were picved for the first time, using different methods, by M. Cohen and S.
Montgomery in [3]. Corollaries 6.4 and 6.6 complete the results of this paragraph.

1. Notations and pretii.ivaries

All riras considered in ti*is paper will be unitary. If R is a ring, by an R-module
we will mean a left R-modu.z, and we will denote the category of R-modules by
R-mod. If G is a group and R= @, . R, is a graded ring of tyge G, the category
of graded R-modules will be denoted by R-gr. It is well known that R-gr is a
Grothendieck category {9].

If M=@®,cq M, is a graded R-module, we will let M denote the underlying R-
module of M and by A(/if) we will mean the set of all homogeneous elements of M,
i.e. (M) =\J,_, M,. For any submodule of M we define N)y=Dyec(NOM,);
we say that N is a graded subniodule if N= (N)g, more generally (N ) is the largest
graded submodule of M contained in N.

fM=®,.cM,, N=@,.5N, are two graded R-modules, Homyg . (M, N) is
the set of morphisms in the category R-gr from M to N, i.e.

Homp . (M, N)={f: M- N|f is R-linear and f(M,)C N,, VaeG}.
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If M=@®,.cM, is a graded R-module and g€ G, then M(o) is the graded
module obtained from M by putting M(g), =M,,; the graded module M(g) is
called the g-suspension of M [9]. It is well known [9] that the mapping M — M(a)
defines a functor from R-gr to R-gr which is an equivalence of categories.

If H is a subgroup of G and R=@,.;R, is a graded ring of type G,
R =®,.c R, is a graded ring of type H.

Moreover, if M=@®,.; M, is a graded R-module and (0,),, is a set of represen-
tatives for the right H-cosets of G, then for each o; we put MY =®, _, M, 0,
Clearly M‘"9) is a graded R'"-module and M =@, ., M9 [9].

If H<G is a normal subgroup of G, the G-grading on R induces a G/H-grading
on R:R=®ge/nRs Where Rg=®Dje y Ry (see [9]).

If R=®,cq R, is a graded ring, we say that R is a strongly graded ring if
R,R. =R, for any g,7€G. It is well known [9] that R is a strongly graded ring if
and only if R;R, =R, for any g€ G (e is the identity of the group G).

If H<G is a subgroup of G, hen R is also a strongly graded ring.

The connection between the categories R-gr and R,-mod is given by the
following:

Theorem P ([S, Theorem 2.8] or [9, Theorem 1.3.4]). Let R= @), .; R, be a strongly
graded ring. Then the functor R®pg - :R,-mod—R-gr given by M—R Rr. M
where M € R,-mod and R®g, M is a graded R-module by the grading (R®g M), =
R,®g, M, is an equivalence. Its inverse is the functor (-),: R-gr— R,-mod given
by M—M, where Me R-gr and M= @ .o M,.

2. Group ring of graded rings

If R=®,.cR, is a graded ring of type G we denote by R[G] the left free
R-module with the basis {o|c€ G}, i.e. RIG1={Y,.;A.&|1,€R}.
We define for every oeG:
(RIGDs= Y Riu=3Y R,, 1=@ R, 1.

Au=a teCG TeG

Clearly RIG])=®,.;(RIG]), and R[G] is a graded R-module with the grading

{(R[G])a}aeG-
For the elements A,7 and A,.t" where A,e R, A, € R, , we define their product

by
(*) AT Ay T)=Ayd (0" '10'T).

g€CG

Since every element of R[G] is an unique sum of elements of the form A,z with
Ao € R,, the product (*) may be extended to a multiplication on R[G].

Proposition 2.1. With the above notations, we have the following assertions:



316 C. Nistdsescu

(1) The multiplication defined by (#) is associative.

(2) RIG] is a strongly graded ring with the grading {(R[G]),,6€G}.

(3) RG] is also a free right R-module with basis {a|ae G}.

4) (RIGDe=LY,ccRs10 and ¢:R-(R[G])., ¢(¥,.c46)= Zoeclaa—t where
A,€R, is a ring isomorphism.

(5) If H< G is a normal subgroup of G, then R[H) is a graded subring of R[G].
(Here RIH]={XY"_ Aih;j|A;eR, h;e H}.

(6) If I is a graded left ideal of R, then NG| is a left graded ideal of RG] and
NIGIN(RIG .= o).

Proof. We consider the elements {1,7;};-, 3 where 4, € R;. Then we have
(Ao, T Rg,T2)A0,T3) = (Ao, 1), ,03 ' 1203 T3)
=454 0,A0,(0,03)'11(0,03)07 ' 120373
= (Ao hosho 07 07 10,7204 T3).
On the other hand
(g, T1)Aa,2)(Ag,T3) = (Ao 4,07 ' 1102 T2)(Ag,T3)
= {Ag A, dy)T3 (07 '110,T2)03 73
= (A Ag,Aq,)(03 07 ' 71621203 T3).

Hernce
(A6, T(A4,72)(A4,T3)] = [(A4,T1)(A4,T2) (A6, T3)

and so the multiplication of R[G] is associative.
(2) In order to prove that (R[G]),(R[G]), C (R[G])ss- it is enough to show that
(Ry: IR, 17') C(R[G))go- Indeed, if Ay, 1€ R, and A4 -1 € Ryt We have

Gor DTV =Wgr 1Age- N0 1077
= 'y NT'0' 10"V E Ry 150 11'0" " 10
=Rso'(r'a’ e’y '(T'a'~I 76’) C (R[G)yq-

Since R,o C(R[G]),, 1-0€(R[G]),. Analogously 1-a7!e(R[G]), ' and therefore
(RIG)), " (RIGD),-1=(R[G]),. Hence R[G] is a strongly grads ring. (In fact R[G]
is a crossed product [9].)

(3) We consider the sum Y7, g;4,=0 where A, € R. Since {g));-,, ..., are homo-
geneous elemenis, we may suppose the A, are homogeneous elements of R. Assume
that 1,=1,€R,. But ¥ giA, =¥ A,(07'g;a,)=0.

Since deg(g;4,,)=deg(g4,,)="--=deg(g,4,,), £10,=80,="--=g,0, and there-
fore the elements {g; 1g,-a,-},'zl,m,,, are pairwise distinct. Then from the equality
Y Ao(07'g,0,)=0 we obtain 4, =0, i=1,...,n.

(4) If'lae Ra’ lt € R'rs we have ‘p(/lalr):;'alr(at)—l=(A.-aak1 )(Ar T‘l)z(p(ia)' ‘p(lr)
and therefore ¢ is a ring homomorphism. It is clear that ¢ is an isomorphism.
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(5) Let A h, A, k'€ R[H] where A,e R, A, € R, and h,h’e H. Then (1A}, h') =
AgAg.(g"“hg’h')eR[H]. Hence R[H] is a subring of R[G]. It is clear that R[H] =
@gGG(R[H]ﬂ(R[G])R) which shows that R[H] is a graded subring of R[G].

RIH], = {z Ahi] A€ Ry, with gihy=g (1 sisu)}

(6) The inclusion ¢(7) C IIG]N(R[G]) is clear. Now, let xe I[[G]N(R[G]),. Then
x=Y" Ag, A;€l. Since xeY R, g then 1,eR,, and it follows that x=
(L] A)eoll).

Remarks. (1) One can also consider the usual multiplication on R[G]: {a,g)(b,h) =
a,by(gh), where a,, b, € R, but with this multiplication R[G] is not a graded ring
with the above grading.

(2) It is now easy to see that Vge G commute with any element of R[G], and
therefore R[G] is the group ring of (R[G]),, by the group G in the classical sense.

Let now M= @, g M, be a left graded R-module. We denote M[G] = D, c M,
where M, =M, Vge G which is a left R-module. We can identify

MI[G]= {g;a mgg[mgewl}

The family of abelian groups (M[G]),=¥,, ., M,z defines on M[G} a graduation
as an R-module. We define on M[G] the multiplication by the rule:

(@, T)(mgh)=(a,m, )& 'tgh),  a,€R,, myeM,.

Proposition 2.2. With the above notations we have:

(1) M[G] is a graded R{G)-module with the graduation {(MIG)),|ceG}.

(2) M[G]).=X,.; M,10 and the mapping v : M—(M[G]), where WY, oo Me)=
Y meg~', mye M, is a p-isomorphism.

(3) If H<G is a normal subgroup of G, then M[H] is a graded R{H]-module.

(@) If NC M is a graded submodule of M, then NG is a graded submodule of
M[G] and NIG]N(M[G]), = w(N).

(5) M[G) is isomorphic in the category R-gr t0 @y M(g™").

(6) If NCM is an R-submodule of M (non-graded), then R[Gly(N)NM=(N),.

Proof. The statements (1), (2), (3) and (4), are proved exactly &s in Proposition 2.1.

(5) The mapping ¥ _,m,g—(m,), ¢ is an R-isomorphism in R-gr from M|[G]
to @geGM(g_l)-

(6) If x,€ N\ M,, since x,=g(x,g"'), then x, € R[Glw(N) and therefore (N),C
MNOR[GIy(N).

Conversely, let x=Y _;x, be an element of N. We denote by x*=yly)=
deoxgg“'ev/(N). If u=Y; A1, A5 €R,, is homogeneous of degree 6, then
01T\ =0,3Ty="=0,T,=0. We have

geG
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=Z": Z gg—lri
=i: Z o Xo)(0:8) ot

uM*

E (Aaixg)(0;8)”'6.
Weput x;=Y  ;4,%; and y= Y., x;. It may be easily seen that x;€ N and hence
Y€N. Now it is straightforward to check that ux*=60 Y7  x=0y*.

If ae R[G]w(N) is homogeneous of degree 0, then there exists z;e N and v, €
R[G] with deg v;=0 such that a= Y, v, 2. It follows that there exists z& N such
that @=60z*. Now, if e R[G]w(N)NM, it follows that aeMy. If 2=Y .2,
with z,€ M, then =0z*=0%, ;2,8 ' =¥, ;28 '0 and since @€ My, we must
have z,=0 for g+ 6 and hence a =2zy=2z which shows that a € (N),.

3. Graded rings with finiteness conditions

If R=@,.cR, is a graded ring of type G and M=®,.5M, is a graded R-
module, then M is said to be gr-G-noetherian if M satisfies the ascending chain con-
dition on graded submodules. It is straightforward to check that M is gr-G-
noetherian if and only if each graded submoduie of M is finitely generated.

The group G is said to be a strong polycyclic-by-finite group if G has a finite
series {e} =Gy C G,C--CG, =G such that G, is a normal subgroup of G for each
i=0,1,...,n and the quotients G;, ;/G; are either finite or cyciic. (If G has a finite
subnormal series {e} =Gy<G,<--- <G, =G such that G, ,/G; are either finite or
cyclic, the group G is called polycyclic-by-finite (see [13]).)

The main result of this section is the following:

Theorem 3.1. Suppose that G is a strong polycyclic-by-finite group and
M=®,ccM, is a graded R-module. Then the following assertions are equivalent:
(1) M is gr-G-noetherian.
(2) M is a noetherian R-module.

The proof of this theorem requires some preliminary results:

Lemma 1 [9]. Let H<G be a subgroup of G and let {a;};.; be a set of represen-
tatives for the right H-cosets of G. If M is Gr-noetherian, then M%) =
@he Mg, is gr-H-noetherian over the ring R™,

In particular, if [G: H)< oo, then M is gr-H-noetherian over the ring R'").
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Proof. See [9, Corollar '+ | 13].

Lemma 2. Ler {6)<G . .qfinite cyclic normal subgroup of G. We denote by
H,={ge G |there exists - 0 :uch that g"'cg=0c"}. Then:

@) IfgeG, g 'lag=0"".

(b) H,={geG|g 'og=0}.

(c) Hy=H, .

(d) H,<G and [G: H,]<2.

Proof. (a) Since (@) is a normal subgroup, we have for each ge G, g 'ag=a' and
gag '=¢", where t,ueZ. Hence ga'g™' =7 or (gog ') =0. Hence 6 =0 and
therefore ur=1. It follows that 1= +1.

(b) We apply (a).

(c) Since g7lag=ce(g 'ag) '=a'eg la 'g=0"", it follows that H_ = :.

(d) If g,he H, it is clear that ghe H,. Now if ge H,, g 'og=0 or gog ™' =0 or
(g ") 'o7'=0 and hence g"' € H,. Thus h, is a subgroup of G. Let ge G, he H,;
if ge H,, then g”'hge H,; if g¢ H,, then by assertion (a), gog~'=¢ ! and hence
g'o7'g=a.Then (g 'hg) 'o(g ' hg) =g 'h " (gog Yhg=g 'h ‘o 'hg=g o 'g =
o and hence g 'hge H,. Thus H, is a normal subgroup of G. Assume that
[G:H]=3. There exist §,,§,€ G/H, such that §,#g, and g,#e, g +#e. Thus
2,8 ¢ H, and by assertion (a) we have g;'og, =o' and g;'og,=0'. Then
(€18:') 'alg1: ) =exer'og))e: = #207'g;' =0 and therefore g,2.'€H,.
Hence g, =g,, a contradiction.

1 1

Lemma 3. Ler Ha K <G be two normal subgroups of G such that K/H ={&) is an
infinite cyclic group. Let M= @geg M, be a graded R-module such thar M[H] is
a gr-noetherian module over the ring R{H].

Then MI|K] is a gr-noetherian module over the ring R[K].

Proof. By Proposition 2.2, M[H] is a graded R[H]-mocdule of type G. If
y=Y. mih;, mieM, h;e G, is an arbitrary element of M[G] and ge G, then by
yg we understand the element yg=1Y" A m;(h;g) € M[G]. With these notations we
have

y(gg')=(yg)g’ for any g,g'€G.
Now, since K=(H,a,07"),

M[K1=M[H1[a,a“‘1={ ¥ xo

t=-m

x; e M[H],m, n_>_0}.

We denote
H,={geG|§ '66=6in G/H}={geG |z 'og=hg hc H}.
By Lemma 2 we have K<H,; <G, H,=H; | and [G: H ;] <2.
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We denote S=R[H] and N=MIFL. 1) 1t is clear that S is a graded ring of
type H, and N is a graded S-module.

Sublemma 1. Let y= YY" m, h;e M:H]'" be a homogeneous element of degree 1,
where m, e M,, h;e H. Let heH be such that t™'ot=ha and h’'=th~ ‘1.
Then h eH (h'e)y =ya and ay=y(ho)=(yh)a.

Proof. By Lemma 2, there exists #€ H such that v 'ot=ho and since H is a

normal subgroup, #’€ H. Because deg(y) =1, g,h =8 hy=--=g,h,=1€ H,. Thus
(h'o)y=T¥ (h'o)myh)= ¥ my (g 'h'ogih)
i=1 i=

m (& 'hen)= Z myg (g 'th™ 't tho)

nM:

=Y m, (g 'to)=Y m,(g ' o= Zl mg hio=yo.
i=1 i=1 iz

Analogously we show that ov={;h)o. .
Now, from Sublemma 1, S[g]={Y" sio'|s €S, m=0} is a graded ring of R[G]
and N[a] is a graded module over the ring S[o].

Step 1. N[og] is a gr-noetherian module over the ring S[o].
Indeed, let XC Nio] be a graded submodule of N[ag]. We denote, for each n=0,

X,={yeN|IxeX: x=y,+y,0++y,_,6" '+ yc", y;e N}.

It 1s easy to see that X, is an S-submodule of N. Because X is a graded submodule
and o is a homogeneous element, X, is moreover a graded submodule of N.

Now, let y€ X, be a homogeneous element; there exists a homogeneous element
xe X with x=y,+y,6+ -+ ya", y;€ N. By Sublemma 1, (h'c)xe X and (h'o)x=
(Wa)Yo+ (W' G)y,0+ -+ (ho)ye"=(h'a)y,+ -+ ya"*! and therefore ye X,,,,. It
means that X, C X, C--CX,C-- is an ascending chain of graded submodules of
N. Since M[H] is a gr-noetherian module, it follows by hypothesis, by Lemma
1, that N is a gr-noetherian S-module. Thus there exists »=0 such that X, =
Xy =

For i=0,1,...,n, let {y;};., .« be some finitely many homogeneous elements
of N that generate X; as S-module and choose x;; € X with

i-1
Xij =yijo"+ Z ZkJ'O'k, Zkj eN.
k=0

Let xe X be a homogeneous element, x=y,+y,0 + - +y,0”, where y;e N are
homogeneous. By induction or: the degrees of ¢ we show that x is a left S[o] linear
sum of elements {x;|i=0,...,n; j=1,...,k}.

Indeed, y,e X,. If p=n, then ypeX so that y,= L, | @y Vnj» nj € S. By Sub-
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lemma 1, y,6”=y,6" "¢" =¥ A,;(y,;6") where 1,;€S. Hence y,0" = Y Aux,+
lower degree terms. So x- Y A,x;€X and x— ¥ A,x;=yo+yo+ - +y,0"
where m<n and y;e N. Now apply the induction hypothesis.

Step II. N[o,07 '] is a gr-noetherian module over the ring S[c,a'].

Indeed, let X be a graded submodule of N[o,67']. Then XNN][a] is a graded
S[o]-submodule of Nl[og] and therefore it is generated by finitely many homo-
geneous elements xi,...,x,€ XNN[g]. If xe X is a homogeneous element, then
x=Y,_ . mo*, ngeN are homogeneous elements. By Sublemma 1, ¢”xe Na]
and therefore o”x=Y"  A,x;, A;€Sio]l, so x=Y7 (67"1)x; and hence X is
finitely generated.

In addition, if X C Y are two graded S[g, "~ !]-submodules of N[o,o '}, then we
have X=Y & XNNlag]= YNNI[o]. We denote P=M[H]'CH), By Lemma | and
the hypothesis, P is a gr-noetherian module over the ring R[H ]

Step III. Plo, o7 '] is a gr-noetherian module over the ring S[o,0'].

Sublemma 2. Let y= Y m, h; e M[H 1/¢-Ho) be @ homogeneous element of degree t
where m, € M,, h;e H. Let he H be such that t"'ot=ho ™' and h’'=th 't .
Then h’e H, (h'c)y=yo~" and ay=y(tha™").

Proof. We have g\h, =g,h,=---=g,h, =1 where t¢ H,. Since HC H,,, g, ¢ . By
Lemma 2, there exists 4 such that t 'er=ho~'. Exactly as it: Sublemma !, we
show the two equalities.

Now, by Sublemma 2, P[c '] is an S[o]-graded module. Exactly as in Step I, we
show that P[] is a gr-noetherian module over the ring S.

Now, proceeding as in Step II, we prove that Plo,c7'} is an S[o,0 ')-gr-
noetherian module.

Step IV. M[K] is an R[K]-gr-noetherian module.
Indeed, M[K]=Nl[o,6"'{®P[o,67']. By Steps Il and I, M[K] is a gr-
noetherian module over the ring R[K].

Proof of Theorem 3.1. The implication (2)=(1) is clear.

(1)=(2). Let {e} =G,CG,C---CG,=G be a normal series for G. By induction
on 0<i<n we show that M[G,] is a gr-noetherian module over the ring R{G,]. It
i=0, then M[Gy] =M and therefore the statement is obvious. We suppose that
MIG] is a gr-noetherian module over the ring R[G,]. If G,. /G, is a finite group,
we assume that G;,,/G;={68,,...,6,}; then M[G, . ] =M[G/lo, + - + M|G }a,. lt
is clear that the M|[G,)o; are R[G,]-gr-noetherian modules, so M{G, . ] is R{G }-gr-
noetherian. Hence M[G;, ] is an R[G,, ]-gr-noetherian module.

If G;,,/G; is an infinite cyclic group, by Lemma 3, we obtain the statement.
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Consequently, M[G] is an R[G]-gr-noetherian module.
By Theorem P, it follows that (M[G]), is an (R[G]).-noetherian module. Now
apply Proposition 2.2 and obtain that M is an R-noetherian module.

If M is an R-graded module, we denote by K.dimg M, the Krull dimension of M
in the category R-mod, respectively in R-gr. (For details on the Krull dimension of
a module see [6].)

It is well known that if M is a gr-noetherian module, then gr-K.dimy M exists.

Theorem 3.2. Suppose that G is a strong polycyclic-by-finite group and M is an
R-gr-noetherian module (hence an R-noetherian module). Then:

gr-K.dimy, M <K.dimy M < gr-K.dimgy M + h(G)
where h(G) is the Hirsch number associated to G (see [13, p. 426)).

Proof. Let {e} =G,CG,C--CG,=G be a normal series for G. Taking into ac-
count the proof of Lemma 3 and the properties of the Krull dimension, it may be
casily seen by induction on O0<i=<n that K.dimgg,, , MIG;, ] =K.cingg; M[G;]
if G;,,/G; is a finite group and K.dimg(g, ] MG, ]1=K.dimgg,; MIG;]+1 if
G,.1/G; is an infinite cyclic group. Now add these inequalities to obtain the re-
quired inequality.

4. A graded version of Maschke’s theorem. Applications

In this paragraph (unless otherwise rientioned) R= @, s R, will be a graded
ring of type G where G is a finite group with n=ord G.

Let M=®,ccM,, N=@B,.cN, be two R[G]}-graded modules and fe
Homg . (M, N). We define the map f: M—N by the equality:

fo)= ZG g ' f(gx), VxeM.

Lemma 4.1. fe Hompgy (M, N).

Prooef. It is easy to see that f(M,)CN,, VoeG.
Now we show that f is an R[G]-homomorphism, i.e. flax)=af(x) for every

a€ R[G]. It is clear that it is sufficient to prove that for a=1,1, A,€R,, 1€G.
Indeed,

JA0x) = ZG g7 (A, )= Y g7 (A (g agT)v)

geC

=Y g2, flc"'go)= ¥ 1,07 g of((a 'gar)x).
8 geG

If we denote h=0""'gat, we have
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OG0 =Y (A 10 'ga1) ' fi(6 ™ 'ga1)x)

Lel

=21 ¥ h™ (o) = (4,00
heG

Proposition 4.2. Let M be a graded R[G)-module and let N C M be an RIG|-graded
submodule of M. Assume that M has no n-torsion, where n=ord G. If N is a direct
summand of M in R-gr, then there exists an R[G)-graded submodule P of M such
that N®P is essential in M as an R-module.

Furthermore, if M=nM, then N is a graded direct summand of M as R[G)-
module.

Proof (After the proof of [7, Lemma 1] or [8, Proposition 2.1}. We have
SeHomg (M, N) such that f(x)=x, VxeN. Let fe Homg oM, N) as in
Lemma 4.1. If xe N, then f(x)=nx. We denote P=Ker f; P is a graded RIG]-
submodule of M. If xe PNN, then nx=0 and by hypothesis we have x=0. Let
x € M; we denote y = f(x) e N. Then f{nx) = nf(x) =ny =f(y) and hence fnx- y) =0
or nx—ye€ P and therefore nxe P@®N or nM C N. Hence N@ P is essential in M as
’-module. The second statement is clear.

If M e R-gr, M is said to be gr-simple [9] if for every graded submodule N of M
vwe have N=0 or N=M.

MV is said to be gr-semi-simple if M is a direct sum of gr-simple modules. It i well
known [9] that M is gr-semi-simple ¢ for any graded submodule N of M, N is a
graded direct summand.

Theorem 4.3. Let M be an R-gr-semi-simple module. [f M has no n-torsion, then
M is an R-semi-simple module.

Proof. It is sufficient to prove the statement in the case M is gr-simple. We consider
the graded R[G]-module M[G]. By the assertion (5) of Proposition 2.2, M|G] is
isomorphic to @,.5M(c™') in the category R-gr. Hence M[G] is an R-gr-semi-
simple module. Since M is gr-simple and M has no n-torsion, M =nt\, so
M[G)=nMI[G].

By Proposition 4.2 it follows that M[G] is an R[G]-gr-semi-simple-madule.

By Theorem P, (M[G]), is an (R[G]),-semi-simple module and hence M is an R-
semi-simple module.

Corollary 4.4. Let R=®,.c R, be a graded ring of type G where n=ord G is in-
vertible in R. If R is a gr-semi-simple artinian.

For the R-graded module M we denote by s(M), resp. s, (M), the socke of the
R-module M, resp. the gr-socle of M (i.e. s,(M) = sum of gr-simple submodules ot
M).
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Theorem 4.5. Let M= ®,.c M, be an R-graded mod e where n=ord G. Then:
(1) (M) € 5,{M).
(2) nsg(M)Cs(M).
(3) If M has no n-torsion, then sg(M)=s(M).
@) If x= Y, ;X €5(M) where x,€ My, then nx,es(M), VgeG.

Proof. (1) It is well known that s(M) = intersection of all essential submodules of
M. Analogously, we can show that 5,(M) = intersection of all graded essential sub-
modules of M. By Lemma 1.2.8 of [9, p. 11], every graded essential submodule of
M is an essential submodule. Hence s(M) C s,(M).

(2) Let NCM be a gr-simple submodule of M. If nN=0, then nNcCs(M). If
nN-=+90, then because N is gr-simple, N=nN and hence N has no n-torsion. By
Theorem 4.3, it follows that N is a semisimple submodule of M and consequently
N ¢ s(M). Hence ns,(M) € s(M).

(3) follows from (1) and (2).

(4) By assertion (1), we have that x, €s,(M), Vae G. Now we apply statement
(2) and we obtain that nx, e s(M) for any o e G.

Corollary 4.6 [11, Theorem 2.2). Let R= @), 7 R; be a graded ring of type Z and
let M=@®;.;M; be an R-graded module. Then the socle s(M) is a graded sub-
moduie of M.

Proof. Pick xes(M) and decompose it as x=x_g+X_; 1+ - +Xg+ X+ -+ X,
where x; € M;. Let n>1+ k; the Z-graduation of R induces a Z/nZ-graduation in an
obvious way. In this graduation the homogeneous components of x are exactly
X _ts X_fy1see0sXps Xps ..., X;. By Theorem 4.5 we have that nx; € s(M).

Pick p,q two prime numbers such that they are both greater than /+ k. Hence
px;es(M) and gx; e siM). Since (p,q)=1, x;e M and therefore s(M) is a graded
submodule of M.

Theorem 4.7. Let R=®,. R, be a graded ring of type G. {G is a finite group).
If Q=®,c6 Q, is a gr-injective object in the category R-gr, then Q is an injective
module in R-mod.

Proof. We show that Q[G] is an injective object in the category R[G]-gr. Indeed,
we consider the following diagram
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NEC—— M
if

0IG]
01— 0iG)]

where MeR[G]-gr, N is an R[G]-graded submodule of M and fe
Homgg& (N, QIG)).

We define the canonical projection n:Q[G]—~Q by n(Y,., m.8)=m, where
mee @ and i: Q—=Q[G] by i(m)=m-e.

If xe(Q[G]),, then

x—AZ myu= Z Mgy, ‘U
u=a
and therefore n(x) =m,, so n((M[G]),) S M,. Hence ne Hom, ,.(Q[G]. Q). It is
clear that ie Homg,(Q, @Q[G1). We denote g=i°n° fe Homg (N, QIG]). Since
QlG1=®,cc0(@") in the category R-gr, Q[G] is an injective object in the
category R-gr. There exists an h € Homg ., (M, Q[G]) such that A(x) = g(x), Vi N,
We consider the morphism A e Homgg.er(M, Q[G)) given by Lemma 4.1. Mence
h(x)=Y,.,0 ‘'h(c-x), xe M. If xeN,, we have

A=Y o7 o -x)= Z g liomof)e-x)= ¥ o ti(nlafio).

oeG oeG
Since f(x) e (Q[G]),, f(x)=¥,.; My, 'u and therefore
af)=Y, my, wi oAy tu=Y my, (ur"'ad).

c€G ueG
If we denote ui~ aA—r then af(x)= _re ¢ Mgir 'T and therefore r(gfix)) =
m,A. On the other hand 6 'm,; =mg;(A"'a " '6"'ad)=m i(2 ‘o '4), s0 we bave

A(x) = Z o 'mg= Y my(A e )= ¥ omy, =1

et
oeG ueG

This means that A(x)=f(x), VxeN. Hence Q|G] is an injective object in the
category R[G]-gr. Now, by Theorem P, we obtain that (Q[G]), is an injective
(R[G]),-module and by Proposition 2.2 (4), Q is an injective module in R-mod.

Corollary 4.8. Let R=®, . R, be a graded ring of tvpe G (G is a fimite growp).
If M e R-gy, then

gr-inj.dimgy M =inj.dimy M.



32 C. Nistasescu

Proof. If 0-M—-Q,—Q,—Q,—--- is a minimal injective resolution of M in the
category R-gr, then by Lemma 1.2.8 of [9] and Theorem 4.7, this is a minimal injec-
tive resolution of M in R-mod.

The graded ring R is said to be gr-quasi Frobenius if R is gr-artinian and gr-
injective.

Corollary 4.9. Let R=D,.; R, be a graded ring of type G (G is a finite group).
If R is gr-quasi Frobenius, then R is quasi-Frobenius.

Proof. It is easy to see that xR is a left R,-artinian module and consequently R is
a left artinian ring. Now the statement follows immediately from Theorem 4.7.

Theorem 4.10. L2t R=®, . R, be a graded ring of type G where n=ord G is in-
vertible in R. If R is a left gr-hereditary (resp. gr-semi-hereditary, resp. gr-regular
Von Neumann) ring, then R is a left hereditary (resp. semi-hereditary, resp. regular
Von Neumannr) ring.

Proof. Let K be a left graded ideal (resp. left finitely generated graded ideal) of
R[G]. There exists a gr-free module L (resp. a gr-free module with finite basis) in
the category R[G]-gr such that

L2 K> RIG]

where ¢ € Hompg..r(L, K} and ¢ is surjective.

Since L is a gr-free R-module (resp. L is a gr-free R-module with finite basis) and
R is gr-hereditary (resp. gr-semi-hereditary), K is a gr-projective R-module and
therefore there exists a @ € Homg (K, L) such that g0y =1y.

Using Lemma 4.1, we consider the map @ € Hompgye (K, L). It is easy to see
that ¢ °(1/n)yy =14 and hence K is a gr-projective R[G]-module. Consequently
R[G] is left gr-hereditary (resp. gr-semi-hereditary). Now we apply Theorem P to
obtain the statement.

Analogously we show that gr-Von Neumann regular implies Von Neumann
regular.

If R=®,.c R, is a graded ring, we denote by gl.dim R (resp. gr-gl.dim R) the
left homological givbal dimensior of the category R-mod (resp. of the category
R-gr).

Theorem 4.11. Let R=@®,.; R, be a graded ring of type G where n=o0rd G is in-
vertible in R. Then

gr-gl.dim R =gl.dim R.
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Proof. The inequality gr-gl.dim R<gl.dim R is clear.

Suppose now that r=gr-gl.dim R. Let M e R[G]-gr and let

...—-an—!-i)...—:Pl—f—LbPO-—io-)M-—«)O

be a projective resolution of M in the category R[G]-gr.

Since R[G] is a free R-module, the P; are projective R-modules for every i =0.

Since gr-gl.dim R:==t, K=Ker f,_,=Im f7 is a projective R-module. Therefore
there exists g, € Hompg (K, P,) such that f, 0 g, = I 5. Using Lemma 4.1, we consider
the map g, € Homggo(K, P,). It is easy to see that f, o (1/n)g, = i x and therefore
K is a gr-projective R[G]-module. Hence gr-gl.dim R[G]=<t. Now, by Theorem P,
we obtain that gl.dim(R[G]).<t and consequently gl.dim R<1.

Remark. If n is not invertible, then Thecrem 4.11 is false. (For example, if
R =R|[G], where R is a field.)

If MeR-gr and KCM is a graded submodule of M, then K is called gr-
superfluous (or gr-small) in M if the case for every graded submodule L ¢ M,
K+ L=M implies L =M.

Proposition 4.12. Let (M)),;., .., be graded R-modules and K,C M, be gr-
superftuous modules in M;, for every i=1,...,n. Then ®_, K, is a gr-superfluous
in @ M,.

Proof. Using the induction method, it is snfficient to prove the preposition tor he
case n=2.

Let L be a graded submodule of M;®M, such that (K,@K,)+ L =M@ Al
It is easy to see that K, +(K;+L)YNM,=M,. Since K, is gr-superfluous in },,
(K, + L)YNM,=M,, so M,CK,+L.

Siuce K|C:M1CK2+LCM|®M2, K2+L=M‘®M2. Hence K3+(LﬁM:)= \’:
Since K, is gr-superfluous in M,, LNM;=M,, so M>CL and therefore M, Z L.
Hence L =M,®M,.

Theorem 4.13. Let R =@, R, be a graded ring where G is a finite group and let
M be a graded R-module and K C M bc ¢ gr-superfluous submogule in M. Then R
is a superfluous submodule in M.

Proof. By Proposition 2.2(5) and Proposition 4.12, we have that A{G] 5 a
superfluous submodule in M[G] as R[G]-module. Now, if we apply Theorem P, we
obtain that w(K)=(K[G]), is a superfluous submodule in w(M)=(M[G]), as
{R[G]),-module. Hence K is a superflucus submodule in A,

Remark. Theorem 4.13 is false if the group G is infinite (see Remark 1.2.8 w {9,
p. 10)).
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If M is a graded module, we denote by J,(M) the intersection of all gr-maximal
submodules of M; we call J,(M) the gr-Jacobson radical of M (see [9]).
We shall denote by J(M) the Jacobson radical of M regarded without grading.

Corollary 4.14. Let R=@®,.; R, be a graded ring where G is a finite group and
let M be a graded finitely generated R-module. Then

J(M) C J(M).

Proof. It is easy to see that J,(M) is the unique largest gr-superfluous submodule
in M. By Theorem 4.13, the assertion follows.

Corollary 4.15. Let R=®,.c R, be a graded ring where G is a finite group and
let M' be a graded R-module. If P—— M —0 is a projective cover of M in the
category R-gr, the P— M —0 is a projective cover of M in the category R-mod.

Remarks 4.16. (1) All results in this section generalize their analogues given in [8]
for strongly graded rings.

(2) It is easy to sce that the converses of Theorems 4.3, 4.7, 4.10 and Corollaries
4.4 and 4.9 also hold.

(3) Let R=(D;cz R, be a graded ring of tyre Z such that it is left and right
limited, i.e. there exist m e N with the property that R;==0, VieZ, i¢ [-m,m].

For a: arbitrary ne N such that n>m, the Z-graduation of R induces a Z/nZ-
graduation in an obvious way.

With new grading, the homogeneous components of R are the same with the ones
in the initial grading.

This remark allows us to apply some of the results of this section to the case of
Z-graded rings which are left and right limited. Let us show, for example, that if
Q=@®;.70Q; is a gr-injective R-module, then Q is an injective R-module. Indeed,
let I be a left graded ideal of R (considered with the (Z/nZ)-grading). Then [ is a
left graded ideal of R with the initial grading. Since Q is gr-injective,
ExtR(R/I,Q)=0 and hence Q is gr-injective in the (Z/nZ)-grading. Applying now
Theorem 4.7, the assertion easily follows.

There are numerous examples of graded rings of type Z which are left and right
limited. Here is one of them: let (R, R My, sNg, S) be a Morita context with maps
(,):M®sN—->Rand [, |: N®gM~—S (see for example [1, p. 62]). We consider
the matrix ring

[k M
=~ s)

in which the multiplication is defined by means of the mappings ( , ) and [, ]. The
ring 7 may be graded as follows:
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R O 0 M 0 0
TO:-(O S>' R|=<0 0) and R':<N 0).

/

With this grading, T is left and right limited.
5. The Jacobson radical

Lema 5.1. R=®,.; R,, where G is a finite group.
If M=®,.c M, is a gr-simple object in R-gr, then M is semi-simple artinian of
finite length in R,-mod and Iy (M)<n, where n=ord G.

Proof. If M;#0, let xe M;, x+0. Since Rx=M, RxNM,=M,. But RxN\ A, = R, x
and R,x=M,. Hence M, is a simple R,-module.

Lemma 5.2. R=®,.¢ R, is a graded ring, where G is a finite group. If Me R[G])-
gr is a simple object, then M is gr-semi-simple of finite length in the category R-gr.

Proof. It is easy to see that g M is finitely generated. So there exists a gr-maximal
submodule N of M in the category R-gr. Hence M/N is gr-simple in R-gr and by
Lemma 5.1, M/N is a semi-simple R,-module of finite length.

Since M/N=M/aN in R.,-mod, we obtain that M/gN is a semi-simple R, -
module of finite length. (We remark that N is not an R-submodule of M.)

If we denote N*=ﬂaeGaN, then N* is a graded R[{G]-submodule of M. In-
deed, if a,e R, and he G, then aghN*gaghaNzg(ha)g”'aL,Ngg(ha)g 'N, so

aghv*C [ glha)g 'N=N*.
ceC

Since M is a gr-simple module in R[G]-gr, N*=0. Furthermore 0—M —
@, M/aN and we obtain that M is semi-simple of finite length in R.-mod.

Now it is clear that M is gr-artinian and gr-noetherian in the category R-gr.

There exists an R-graded submodule P#0 of M which is gr-simple. Now we
define f: P[G]—M, f(xga)=gag‘l - X, Where x,€ P,, g€ G. Clearly f(PIG)),) €
M;, A€ G. We show now that f is an R[G]-homomorphism. Indeed, it a, € R, and
t€ G, we have

S@,)(xg0)) =fla, x,8 ' 1go) =g(g 'tga)g ' A (a;x,)
=(Argog ' )a,x,).
On the other hand
(@,0) f(x,0) = (a;7)(gog 'x,) = (a,808 ')x,
=(Argg ' A Ny x,)

and hence f is an R[G]-homomorphism. Now, since M =Y 6P, it is casy (o sew
that f is surjective.
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By Proposition 2.2(4), P[G] is gr-semi-simple in R-gr, so M is gr-semi-simple of
finite length in R-gr.

Lemms 5.3. Let R=®,.c R, be a strongly graded ring of type G (G is a finite
group). If M= @ .M, is a left graded R-module, then

Jy(MYOM,=Jg (M,).
Proof. If S=@®,.;S, is a simple object in R-gr, then S is a semi-simple R,-
module (Lemma 5.1). Hence Jg (M,) € J;(M)NM,. Conversely, let T be a simple

R,-module and f: M,—~T and R,-homomorphism. By Theorem P, S=R®g T is
a simple object of R-gr. We have

1S

M=R®R0Me R®R‘,T

where 1® f is an R-homomorphism. Hence
(1SN (M) =0

and because J,(M)=R®p (J,(M)NM,) we obtain that Ry, f(Jy(M)NM,)=0,
$0 R,®g, S(J;(M)NM,)=0 and therefore f(J,(M)NM,)=0 or J,(M)NM,C
Jr (M,).

Theorem 5.4. Let R=@,.; R, be a graded ring of type G where n=ord G< o,
and let M=@®,.cM, be a left graded R-module. Then:

(1) J(M) c J(M).

(1) (M) =(J(M)),.

() n- IM)C J,(M).

)Ifx=Y,.; Xo€J(M) where x,e M, then nx, e J(M) for any geG.

(3) If n is invertible in R, then J,(M)=J(M).

(4) JRY'MC J,(M).

(5) JIRNR,=J,(R)NR,=JR,).

Proof. (1) Let U be a gr-simple object in the category R[G]-gr and fe
HompgG}.¢(M[G], U). By Lemma 5.2, U is gr-semi-simple in R-gr. So f(J,(M)) =
(foi)(J,(M))=0 where i is the inclusion morphism i : M —M[G]. Hence J M) C
Jy(M[G]) and therefoie J,(M)[G] C J,(M[G])).

By Proposition 2.2 and Lemma 5.3 we have

Sy (M)GINMIG]). € JMIGDNMIG]). = JMIG]),

or w(sg(M)) C w(J(M)) and the assertion follows.

(1') Let xe (J(M )), be a homogeneous eleinent and fe Hompg (M, S) where S is
a gr-simple R-module. Then f(x)e J(S), so Rf(x) € J(S). If f(x)#0, then because
f(x) is a homogeneous element, Rf(x)=S or J(S) =S, a contradiction (S is a finitely
generated R-module).
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(2) Let xe J(M) be an arbitrary element and fe Homg (M, S) where S is a gr-
simple R module. If S has no n-torsion, then, by Theorem 4.3, S is a semi-simple
R-module and therefore f(x)=0 or f(nx)=0.

If S has no n-torsion, then the homomorphism ¢,:S -8, ¢,(x)=nx, has
Ker ¢, #0. Since S is gr-simple, ¢,=0 or nS=0. Hence f(nx) =0 and consequently
nJ(M) c J,(M ;.

(2’) follows directly from (2), and (3) follows from (1) and (2).

(4) If Se R-gr is gr-simple, then, by Lemma 5.1 we obtain that M is artinian of
finite length in R-mod. Moreover, /x(S)=</g (S)=n. Hence J{R)"S=0 and thus
clearly J(R)"M C J,(M).

(5) It is clear that J,(R)NR,=(J(R)),NR,. Now, by statement (1’), we obtain
the equality J(R)NR,=J,(R)NR,. Let ICR be a left gr-maximal ideal of R. Since
R,/I,CR/I, we obtain, by Lemma 5.1, that R,/I, is a semi-simple artinian module
in R,-mod. Hence J(R,) C/, and J(R,) C J,(R)NR,.

If ae J,(R)N R, we have that 1 —a is invertible in R and it is easy to see that 1 —a
is invertible in R,. Hence ae J(R,), so J,{R)YNRCJ(R,).

Corollary 5.5. If R=®,.; R, is a graded ring of type Z and M= @, - M, u graded
R-module, then J(M) is a graded submodule of M.

Proof. Let x=Y,_, x; € J(M) be an arbitrary element with x; € M,. Let p,q be two
prime numbers which are strictly greater than the number of non-zero homogeneous
components of x. We consider R and M graded by the (Z/pZ)-grading. By Theorem
5.4(2') we have px;e J(M), VieZ.

Analogously, we obtain that gx; e J(M). Since (p,q) =1, x;€e J(M).

Remarks 5.6. The assertions (1) and (2’) of Theorem 5.4 provide an answer to the
question asked by G. Bergman in his paper [2]. We proved them in a more general
case, namely for modules. The includion J,(R) € J(R) was proved for the first time
by M. Cohen and S. Montgomery in [3].

The proof of Corollary 5.5 for M =R was given by G. Bergman in [2) and the
general case was presented in [12]. Another proof of the inclusion J,(M) € J(M) is
contained in Corollary 4.14 using the study of gr-superfluous submodules (see
Theorem 4.13).

6. Singular radical and prime radical

In this section R =@, R, will be a graded ring of type G, where G is a finite
group with n=ord G. Using the graded version of Mas<::ke’s Theorem (see Section
4) we shall prove several properties of the singular and prime radical.

The main results in this paragraph are Corollary 6.3 and Theor¢m 6.5.

The assertion (1) and (4) of Theorzm 6.5 were proved for the first time, using a
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different method, by M. Cohen and S. Montgomery in [3] (see Corollary 5.5 and
6.4 from [3]).

Lemma 6.1. Let M be a graded R[G]-module and let NCM be a graded R-
submodule of M. We denote N*=[")__.oN.

(i) N* is a graded R[G)-submodule of M.
(ii) If N is an essential R-submodule of M, then N* is essential in M as R-module.

Proof. (i) is clear.

(i) Assume that N is an essential R-submodule of M. Let 0#x,eM, be a
nonzero homogeneous c¢lement of M and the set G={oy,...,0,}. Then x=
(o +--+0,)x,eM and x#0. By the proof of [9, Lemma [.2.8], there exists
a,€R, such that a¢,x+0 and a,xeN. Hence a,0,x,€N, Vi=1,2,...,n. Since
a;6=hc;A"'ay, a,0,x,=A0;A"'a;x,e N or a,x,eAa;'17"- N. Therefore a;x, €
ﬂ:':l Ao7'A"!N=N*. Since a;x#0, it is clear that a;x,#0.

Now, using again [9, Lemma 1.2.8] it follows that N*is an essential R-submodule
of M.

Proposition 6.2. Let NCM be two graded R[G)-modules, having no n-torsion.
Then

(i) There exists a graded R[G]-submodule PC M with N® P essential in M as
R-module.

(ii) N is essential in M as R[G]-module if and only if N is essential in M as
R-module.

Proof (After the proof of [8, Corollary 2.1] or [7, Lemma 2]).

(i) Let L be an R-graded submodule of M, maximal with respect to the property
that NNL=0. Then N®L is essential in M as R-module. Let (N®
.‘L)*=ﬂaec - (N®L). By Lemma 6.1, (N®L)* is essential in M as R-module. If
K=(N®L)* then NCKCN®L, so K=N®(KNL). By Proposition 4.2, there ex-
ists an R[G]-graded submodule P of K such that N®P is essential in K as R-
module. Hence N®P is essential in M as R-module.

(i) follows directly from (i).

Corollary 6.3. Let R=®,.; R, be a graded ring and M e R-gr. Suppose that R

has no n-torsion. Then Z(M), the singular submodule of M, is a graded submodule
of M.

Proof. We consider the graded R[G]-module M[G]. By [8, Corollary 2.5]
Zpii(M[G)) is a graded submodule of M[G] and

Zpic)\IMIGDNWMIG)). = Z g6 (M[G]),).
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Let x € Zg)(M[G]) be a homogeneous element of degree 6. Hence x=%" m, h,
where m, e M,, h;e G and g;h; =0 (1 <i=m). Thus I=1,5,(x) is an essential left
graded ideal of R[G]. By Proposition 6.2, / is an essential left ideal of R[G] as an
R-module, thus J=INRCR is an essential left ideal of R. But it is clear that
J-m, =0, so my, € (Z(M)),, V1 <i<m. Therefore ZR[G](M[G])Q(Z(M))g[G] and
consequently

W(Zr(M)) = ZgiG) MG D, = ZIM), [GINMIG]), = w((Z(M)),)
and finally zg(M) C (Z(M)), or Zg(M) =(Z(M)),.

Corollary 6.4. Let R=®,. R, be a graded ring and M € R-gr such that M has no
n-torsion. If NCM is an essential R-submodule of M, then (N), is essential in M.

Proof. Clearly w(N) is essential in w(M)=(MI[G]), as (R[G]),-module. By
Theorem P and [9, Lemma 1.2.8] we obtain that Ry(N) is essential in M[G] as
R[G]-module. Now, by Proposition 6.2(ii), Ry(N) is essential in M[G] as R-
module. Hence M N R[G]w(N) is essential in M as R-module. If we apply Proposi-
tion 2.2(6), we have that(N}, is essential in M.

If R is a graded ring, a graded ideal / is graded prime if whenever JKC/ for J,K
graded ideals of R, then JCI or KC 1.

The graded prime radical rad,(R) is the intersection of all graded prime ideals of
R. We denote by rad(R) the prime radical of R, i.e. the intersection of all prime
ideals of R.

Proposition 6.5. Let R be a graded ring and I a graded ideal oj R.
(i) Iis graded prime & I=(P),, the associated graded ideal of some prime P of R.
(ii) rad,(R)=(rad(R)),.
(iii) 7 is a graded prime ideal of R & there exists a graded prime ideal J of R|G]
such that I=JNR.
(iv) rad, R=rad,(R[G])NR.

Proof. For the statements (i) and (ii), see [3, Lemma 5.1}.

(iii) Let J be a graded prime ideal of R[G] and /,, I, two graded ideals of R such
that 1,1, CJNR. Then [[G]- LIG]cJ and therefore I,[G]cJ or L{T]CJ. or
L=L[GINRcJNRor L=L[GINRCJNR. Hence JNR is a graded prime ideal
of R.

Conversely, let I be a graded prime ideal of R. Since I[G]N R =1, we can choose,
by Zorn’s Lemma, a graded ideal J of R[G] maximal with respect to JAR =/ It
is easy to see that J is a graded prime ideal of R[G].

(iv) By statement (iii) we have that rad, R rad,(RIGDNMR. Conversely, we
prove that (rad, R)[G] C rad,(R[G]). For this, it s sufficient to show that if /s a
graded ideal which is nilpotent, then /[G] is a nilpotent ideal in R[G]. Here we show
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that if /™ =0, then (/[G])"=0.

Indeed, it is sufficient to prove that if a,,,...,d,, € I are homogeneous elements
of I and 1y,...,7,€G, then (@47 )(a,,72) " (@, tm)=0. Since (a5,7)MaG,1)=
Ag,05,(07 17,6,7;), there exists an element € G such that (a,1)) " (@5, Tn) =
(@5, *** ag,)T and thus (a,,7)) -+ (@, Tm) = 0.

Corollary 6.6. Let R=®, . R, be a graded ring such that n=ord G is invertible
in R. If Pgl are two ideals of R, where P is a prime ideal, then (P)gg(l )g-

Proof. Clearly, o(P)C o(/) and ¢(P) is a prime ideal of (R[G]),. Since any ge G
commutes with all elements of (R[G]),, RIG]- ¢(P) is a graded prime ideal of
R[G]. Analogously, R[Gle(I) is a two-sided ideal of R[G] and R[G]e(P)C
R[Gle(I). But it is easy to see that R[Gle(/)/R[G]e(P) is essential in
R[G)/R[G]e(P) as R[G]}-module, and hence it is essential as R-module (Proposition
6.2). Using Proposition 2.2(6), we obtain that (7),/(P), is essential in R/(P), and
therefore (P)gg(l )e-

Theorem 6.7. Let R be a graded ring of type G where n=ord G.
(1) If R has no n-torsion, then rad(R)=rad,(R).
(2) n(rad(R)) C rad,(R).
B)Ifa= Yocc e rad(R), a,€ R,, then na,erad(R).
(4) (rad(R))" C rad,(R).

Proof. (1) First, we shall prove the equality:
(rad, R)IG]=rad, R[G].

Replacing the ring R with the ring R/rad, R, it is sufficient to suppose that R is a
graded semi-prime ring. (It is easy to see that the ring R/rad, R has no n-torsion.)
We shall prove then, that rad; R[G]=0. To continue the proof, we shall proceed
as in [14, Theorem 2.2}, using the graded version of Maschke’s Theorem.

Let N be a nilpotent graded ideal of R[G] and let I=Ig5,(N). Then [ is a graded
ideal of R[G] and moreover, I is an essential right ideal in R[G] (see the proof of
[14, Theorem 2.2]). Now we apply Proposition 6.2 and conclude that /N R is an es-
sentia: right ideal in R, hence INR #0. Since rad,(R) =0, [r(INR)=rr(INR)=0.

Since INR is a graded ideal of R, it is easy to see that /g (/N R) =rgigi(INR) =
0 and therefore IR[G](I) = rR(Gv(l) =0. Since NC rRiG](I)’ N=0.

Consequently, we have (rad, R)[G]=rad, R[G]. By Proposition 2.1, ¢(rad,(R)) =
rad, R[G]N(R[G)),. By [8, Corollary 4.4], rad R[G]NR[G],=rad(R[G1]),. Since
rad, R[G] =(rad R[G]),, it is clear that

rad, RIG] N (R[G)), = rad(R[G)), = p(rad R).

So ¢(rad,(R)) = ¢(rad R) and hence rad,(R)==rad(R).
(2) Let P be a graded prime ideal of R and aerad(R). If n- 1€ P, then naeP;
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if n-1¢P, then R/P has no n-torsion and thus, by statement (1) we have
rad(R/P)=0, so rad RC P. Hence nae P. Therefare nae rad,(R).

Assertion (3) follows from (1) and (2).

(4) The ring R/rad,(R) is graded semi-prime. Exactly as in [7, Theorem 7] or [8,
Theorem 4.2], we show that the ring R[G]/rad,(R)[G] has a unique maximal
nilpotent graded ideal N such that N"=0. Hence (rad, R[G])" C rad,(R)[G] and
applying again Proposition 2.1 we obtain that

@((rad R)") C(rady(R)) or (rad R)"Crad,(R).
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